882 resultados para Steric sea level variations
Resumo:
Based on a radiocarbon and paleomagnetically dated sediment record from the northern Red Sea and the exceptional sensitivity of the regional changes in the oxygen isotope composition of sea water to the sea-level-dependent water exchange with the Indian Ocean, we provide a new global sea-level reconstruction spanning the last glacial period. The sea-level record has been extracted from the temperature-corrected benthic stable oxygen isotopes using coral-based sea-level data as constraints for the sea-level/oxygen isotope relationship. Although, the general features of this millennial-scale sea-level records have strong similarities to the rather symmetric and gradual Southern Hemisphere climate patterns, we observe, in constrast to previous findings, pronounced sea level rises of up to 25 m to generally correspond with Northern Hemisphere warmings as recorded in Greenland ice-core interstadial intervals whereas sea-level lowstands mostly occur during cold phases. Corroborated by CLIMBER-2 model results, the close connection of millennial-scale sea-level changes to Northern Hemisphere temperature variations indicates a primary climatic control on the mass balance of the major Northern Hemisphere ice sheets and does not require a considerable Antarctic contribution.
Resumo:
Marine sediment records from the Oligocene and Miocene reveal clear 400,000-year (400-kyr) climate cycles related to variations in orbital eccentricity. These cycles are also observed in the Plio-Pleistocene records of the global carbon cycle. However they are absent in the Late Pleistocene ice-age record over the past 1.5 million years. Here, we present a simulation of global ice volume over the past 5 million years with a coupled system of four 3-D ice-sheet models. Our simulation shows that the 400-kyr long eccentricity cycles of Antarctica vary coherently with d13C records during the Pleistocene suggesting that they drive the long-term carbon cycle changes throughout the past 35 million years. The 400-kyr response of Antarctica is eventually suppressed by the dominant 100-kyr glacial cycles of the large ice sheets in the Northern Hemisphere (NH).
Resumo:
We analysed long-term variations in grain-size distribution in sediments from Gåsfjärden, a fjord-like inlet on the south-west Baltic Sea, and explored potential drivers of the recorded changes in sediment grain-size data. Over the last 5.4 thousand years (ka), the relative sea level decreased 17 m in the study region, caused by isostatic land uplift. As a consequence, Gåsfjärden has been transformed from an open coastal setting into a semi-closed inlet surrounded on the east by numerous small islands. To quantitatively estimate the morphological changes in Gåsfjärden over the last 5.4 ka and to further link the changes to our grain-size data, a digital elevation model (DEM)-based openness index was calculated. In the period between 5.4 and 4.4 ka BP, the inlet was characterised by the largest openness index. During this interval, the highest sand contents (~0.4 %) and silt/clay ratios (~0. 3) in the sediment sequence were recorded, indicating relatively high bottom water energy. After 4.4 ka BP, the average sand content was halved to ~0.2 % and the silt/clay ratios showed a significant decreasing trend over the last 4 ka. These changes are found to be associated with the gradual embayment of Gåsfjärden as represented in the openness index. The silt/clay ratios exhibited a delayed and slower change compared with the sand contents, which further suggest that finer particles are less sensitive to changes in hydrodynamic energy. Our DEM-based coastal openness index has proved to be a useful tool for interpreting the sedimentary grain-size record.