20 resultados para Standard models
Resumo:
Underwater video transects have become a common tool for quantitative analysis of the seafloor. However a major difficulty remains in the accurate determination of the area surveyed as underwater navigation can be unreliable and image scaling does not always compensate for distortions due to perspective and topography. Depending on the camera set-up and available instruments, different methods of surface measurement are applied, which make it difficult to compare data obtained by different vehicles. 3-D modelling of the seafloor based on 2-D video data and a reference scale can be used to compute subtransect dimensions. Focussing on the length of the subtransect, the data obtained from 3-D models created with the software PhotoModeler Scanner are compared with those determined from underwater acoustic positioning (ultra short baseline, USBL) and bottom tracking (Doppler velocity log, DVL). 3-D model building and scaling was successfully conducted on all three tested set-ups and the distortion of the reference scales due to substrate roughness was identified as the main source of imprecision. Acoustic positioning was generally inaccurate and bottom tracking unreliable on rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20% longer than those derived from acoustic positioning due to the higher spatial resolution and the inclusion of slope. On a high relief wall bottom tracking and 3-D modelling yielded similar results. At present, 3-D modelling is the most powerful, albeit the most time-consuming, method for accurate determination of video subtransect dimensions.
Resumo:
Planktonic foraminiferal faunas of the southeast Pacific indicate that sea surface temperatures (SST) have varied by as much as 8-10°C in the Peru Current, and by ?5-7°C along the equator, over the past 150,000 years. Changes in SST at times such as the Last Glacial Maximum reflect incursion of high-latitude species Globorotalia inflata and Neogloboquadrina pachyderma into the eastern boundary current and as far north as the equator. A simple heat budget model of the equatorial Pacific shows that observed changes in Peru Current advection can account for about half of the total variability in equatorial SSTs. The remaining changes in equatorial SST, which are likely related to local changes in upwelling or pycnocline depth, precede changes in polar climates as recorded by d18O. This partitioning of processes in eastern equatorial Pacific SST reveals that net ice-age cooling here reflects first a rapid response of equatorial upwelling to insolation, followed by a later response to changes in the eastern boundary current associated with high-latitude climate (which closely resembles variations in atmospheric CO2 as recorded in the Vostok ice core). Although precise mechanisms responsible for the equatorial upwelling component of climate change remain uncertain, one likely candidate that may operate independently of the ice sheets is insolation-driven changes in El Niño/Southern Oscillation (ENSO) frequency. Early responses of equatorial SST detected both here and elsewhere highlight the sensitivity of tropical systems to small changes in seasonal insolation. The scale of tropical changes we have observed are substantially greater than model predictions, suggesting a need for further quantitative assessment of processes associated with long-term climate change.
Resumo:
Oxygen and carbon isotope measurements were carried out on tests of planktic foraminifers N. pachyderma (sin.) from eight sediment cores taken from the eastern Arctic Ocean, the Fram Strait, and the lceland Sea, in order to reconstruct Arctic Ocean and Norwegian-Greenland Sea circulation patterns and ice covers during the last 130,000 years. In addition, the influence of ice, temperature and salinity effects on the isotopic signal was quantified. Isotope measurements on foraminifers from sediment surface samples were used to elucidate the ecology of N. pachyderma (sin.). Changes in the oxygen and carbon isotope composition of N. pachyderma (sin.) from sediment surface samples document the horizontal and vertical changes of water mass boundaries controlled by water temperature and salinity, because N. pachyderma (sin.) shows drastic changes in depth habitats, depending on the water mass properties. It was able to be shown that in the investigated areas a regional and spatial apparent increase of the ice effect occurred. This happened especially during the termination I by direct advection of meltwaters from nearby continents or during the termination and in interglacials by supply of isotopically light water from rivers. A northwardly proceeding overprint of the 'global' ice effect, increasing from the Norwegian-Greenland Sea to the Arctic Ocean, was not able to be demonstrated. By means of a model the influence of temperature and salinity on the global ice volume signal during the last 130,000 years was recorded. In combination with the results of this study, the model was the basis for a reconstruction of the paleoceanographic development of the Arctic Ocean and the Norwegian-Greenland Sea during this time interval. The conception of a relatively thick and permanent sea ice cover in the Nordic Seas during glacial times should be replaced by the model of a seasonally and regionally highly variable ice cover. Only during isotope stage 5e may there have been a local deep water formation in the Fram Strait.