76 resultados para Spatial properties. Vitality. Heritage areas and intervention project. Marechal Deodoro Square


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 1146 (19°27.40'N, 116°16.37'E) was drilled in ~2092 m water depth in a rift basin on the continental slope of the South China Sea. A total of 607 m of sediment was cored in Hole 1146A, and a composite section from three holes extends down to 640 meters composite depth (mcd). Three stratigraphic sedimentary units were recognized at this site: late Pliocene to Pleistocene nannofossil clay (Unit I), middle Miocene to late Pliocene foraminifer and nannofossil clay mixed sediment (Unit II), and early to middle Miocene nannofossil clay (Unit III). This study reports the mineralogy from the late Miocene through early Pleistocene, 150-440 mcd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluctuations in the length of 72 glaciers in the Northern and Southern Patagonia Icefield (NPI and SPI, respectively) and the Cordillera Darwin Icefield (CDI) were estimated between 1945 and 2005. The information obtained from historical maps based on 1945 aerial photographs was compared to ASTER and Landsat satellite images and to information found in the literature. The majority of glaciers have retreated considerably, with maximum values of 12.2 km for Marinelli Glacier in the CDI, 11.6 km for O'Higgins Glacier in the SPI and 5.7 km for San Rafael Glacier in the NPI. Among the 20 glaciers that have retreated the most relative to their size, small (less than 50 km**2) and medium (between 50 and 200 km**2) glaciers are the most affected. However, no direct relation between glacier retreat and size was found for the 72 glaciers studied. The highest percentage retreat in the CDI was by the CDI-03 Glacier (37.9%) and Marinelli Glacier (37.6%). In the SPI, relative retreats were heterogeneous and fluctuated between 27.2% (Amelia Glacier) and 0.4% (Viedma Glacier). In the NPI, relative retreat was very high for Strindberg and Cachet glaciers (35.9% and 27.6%, respectively) but for the remaining glaciers in this icefield it ranged between 11.8% (Piscis Glacier) and 3.6% (San Quintin Glacier). In addition to surface area, the surface slope (calculated on the basis of the DEM SRTM) was also related to the relative retreat and no straightforward relation was found. From a global point of view, we suggest that glacier retreat in the region is controlled firstly by atmospheric warming, as it has been reported in this area. Besides the general increase in temperature observed, no signal of a geographical pattern for the fluctuations in glacier length was found. Consequently, glaciers appear to initially react to local conditions most probably induced by their exposition, geometry and hypsometry. The heterogeneity of rates of retreat suggests that differences in basin geometry, glacier dynamics and response time are key features to explain fluctuations of each glacier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabric of sediments recovered at sites drilled on the Indus Fan, Owen Ridge, and Oman margin during Ocean Drilling Program Leg 117 was examined by scanning electron microscopy to document changes that accompany sediment burial. Two sediment types were studied: (1) biogenic sediments consisting of a variety of marly nannofossil and nannofossil oozes and chalks and (2) terrigenous sediments consisting of fine-grained turbidites deposited in association with the Indus Fan. Biogenic sediments were examined with samples from the seafloor to depths of 306 m below seafloor (mbsf) on the Owen Ridge (Site 722) and 368 mbsf on the Oman margin (Sites 723 and 728). Over these depth ranges the biogenic sediments are characterized by a random arrangement of microfossils and display little chemical diagenetic alteration. The microfossils are dispersed within a fine-grained matrix that is predominantly microcrystalline carbonate particles on the Owen Ridge and clay and organic matter on the Oman margin. Sediments with abundant siliceous microfossils display distinct, open fabrics with high porosity. Porosity reduction resulting from gravitational compaction appears to be the primary process affecting fabric change in the biogenic sediment sections. Fabric of illite-rich clayey silts and silty claystones from the Indus Fan (Site 720) and Owen Ridge (Sites 722 and 731) was examined for a composite section extending from 45 to 985 mbsf. In this section fabric of the fine-grained turbidites changes from one with small flocculated clay domains, random particle arrangement, and high porosity to a fabric with larger domains, strong preferred particle orientation roughly parallel to bedding, and lower porosity. These changes are accomplished by a growth in domain size, primarily through increasing face-to-face contacts, and by particle reorientation which is characterized by a sharp increase in alignment with bedding between 200 and 400 mbsf. Despite extensive particle reorientation, flocculated clay fabric persists in the deepest samples examined, particularly adjacent to silt grains, and the sediments lack fissility. Fabric changes over the 45-985 mbsf interval occur in response to gravitational compaction. Porosity reduction and development of preferred particle orientation in the Indus Fan and Owen Ridge sections occur at greater depths than outlined in previous fabric models for terrigenous sediments as a consequence of a greater abundance of silt and a greater abundance of illite and chlorite clays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical properties measurements provide a relatively inexpensive and fast way to obtain high-resolution estimates of the variations in sedimentological properties. To better resolve the validity and cause of the geophysical signals measured by the Ocean Drilling Program (ODP) shipboard multisensor track (MST) instruments, 223 x 10 cm**3 core samples were collected at 4 cm intervals in Core 167-1016B-17H at the California Margin Conception Transect for the measurements of index properties, carbonate content, and opal content. This core was chosen because hole-to-hole stratigraphic correlation of MST data suggested that Core 17H corresponds to a depth interval that displays the greatest range of amplitude of many physical properties.