192 resultados para South Atlantic States--Maps, Manuscript--Early works to 1800.
Resumo:
The Late Paleocene and Early Eocene were characterised by warm greenhouse climates, punctuated by a series of rapid warming and ocean acidification events known as "hyperthermals", thought to have been paced or triggered by orbital cycles. While these hyperthermals, such as the Paleocene Eocene Thermal Maximum (PETM), have been studied in great detail, the background low-amplitude cycles seen in carbon and oxygen-isotope records throughout the Paleocene-Eocene have hitherto not been resolved. Here we present a 7.7 million year (myr) long, high-resolution, orbitally-tuned, benthic foraminiferal stable-isotope record spanning the late Paleocene and early Eocene interval (~52.5 - 60.5 Ma) from Ocean Drilling Program (ODP) Site 1262, South Atlantic. This high resolution (~2-4 kyr) record allows the changing character and phasing of orbitally-modulated cycles to be studied in unprecedented detail as it reflects the long-term trend in carbon cycle and climate over this interval. The main pacemaker in the benthic oxygen-isotope (d18O) and carbon-isotope (d13C) records from ODP Site 1262, are the long (405 kyr) and short (100 kyr) eccentricity cycles, and precession (21 kyr). Obliquity (41 kyr) is almost absent throughout the section except for a few brief intervals where it has a relatively weak influence. During the course of the Early Paleogene record, and particularly in the latest Paleocene, eccentricity-paced negative carbon-isotope excursions (d13C, CIEs) and coeval negative oxygen-isotope (d18O) excursions correspond to low carbonate (CaCO3) and coarse fraction (%CF) values due to increased carbonate dissolution, suggesting shoaling of the lysocline and accompanied changes in the global exogenic carbon cycle. These negative CIEs and d18O events coincide with maxima in eccentricity, with changes in d18O leading changes in d13C by ~6 (±5) kyr in the 405-kyr band and by ~3 (±1) kyr in the higher frequency 100-kyr band on average. However, these phase lags are not constant, with the lag in the 405-kyr band extending from ~4 (±5) kyr to ~21 (±2) kyr from the late Paleocene to the early Eocene, suggesting a progressively weaker coupling of climate and the carbon-cycle with time. The higher amplitude 405-kyr cycles in the latest Paleocene are associated with changes in bottom water temperature of 2-4ºC, while the most prominent 100 kyr-paced cycles can be accompanied by changes of up to 1.5ºC. Comparison of the 1262 record with a lower resolution, but orbitally-tuned benthic record for Site 1209 in the Pacific allows for verification of key features of the benthic isotope records which are global in scale including a key warming step at 57.7 Ma.
Resumo:
We investigate the evolution of Cenozoic climate and ice volume as evidenced by the oxygen isotopic composition of seawater (delta18Osw) derived from benthic foraminiferal Mg/Ca ratios to constrain the temperature effect contained in foraminiferal delta18O values. We have constructed two benthic foraminiferal Mg/Ca records from intermediate water depth sites (Ocean Drilling Program sites 757 and 689 from the subtropical Indian Ocean and the Weddell Sea, respectively). Together with the previously published composite record of Lear et al. (2002, doi:10.1126/science.287.5451.269) and the Neogene record from the Southern Ocean of Billups and Schrag (2002, doi:10.1029/2000PA000567), we obtain three, almost complete representations of the delta18Osw for the past 52 Myr. We discuss the sensitivity of early Cenozoic Mg/Ca-derived paleotemperatures (and hence the delta18Osw) to assumptions about seawater Mg/Ca ratios. We find that during the middle Eocene (~ 49-40 Ma), modern seawater ratios yield Mg/Ca-derived temperatures that are in good agreement with the oxygen isotope paleothermometer assuming ice-free conditions. Intermediate waters cooled during the middle Eocene reaching minimum temperatures by 40 Ma. The corresponding delta18Osw reconstructions support ice growth on Antarctica beginning by at least 40 Ma. At the Eocene/Oligocene boundary, Mg/Ca ratios (and hence temperatures) from Weddell Sea site 689 display a well-defined maximum. We caution against a paleoclimatic significance of this result and put forth that the partitioning coefficient of Mg in benthic foraminifera may be sensitive to factors other than temperature. Throughout the remainder of the Cenozoic, the temporal variability among delta18Osw records is similar and similar to longer-term trends in the benthic foraminiferal delta18O record. An exception occurs during the Pliocene when delta18Osw minima in two of the three records suggest reductions in global ice volume that are not apparent in foraminiferal delta18O records, which provides a new perspective to the ongoing debate about the stability of the Antarctic ice sheet. Maximum delta18Osw values recorded during the Pleistocene at Southern Ocean site 747 agree well with values derived from the geochemistry of pore waters (Schrag et al., 1996, doi:10.1126/science.272.5270.1930) further highlighting the value of the new Mg/Ca calibrations of Martin et al. (2002, doi:10.1016/S0012-821X(02)00472-7) and Lear et al. (2002, doi:10.1016/S0016-7037(02)00941-9) applied in this study. We conclude that the application of foraminiferal Mg/Ca ratios allows a refined view of Cenozoic ice volume history despite uncertainties related to the geochemical cycling of Mg and Ca on long time scales.
Resumo:
The book is devoted to investigations of benthic fauna and geology of the Southern Atlantic Ocean. These works have been carried out in terms of exploring biological structure of the ocean and are of great importance for development of this fundamental problem. They are based on material collected during Cruise 43 of R/V Akademik Kurchatov in 1985-1986 and Cruise 43 of R/V Dmitry Mendeleev in 1989. Problems of quantitative distribution, group composition and trophic structure of benthos in the Southern Scotia Sea, along the east-west Transatlantic section along 31°30'S, and offshore Namibia in the area of the Benguela upwelling are under consideration in the book. Authors present new data on fauna of several groups of deep-sea bottom animals and their zoogeography. Much attention is paid to analysis of morphological structure of the Scotia Sea floor considered in terms of plate tectonics. Bottom sediments along the Transatlantic section and facial variation of sediments in the area of South Shetland Islands and of the continental margin of Namibia are under consideration.
Resumo:
Miocene to Recent species of planktic foraminifera in the Globorotalia (Globoconella) lineage evolved entirely within the thermocline. All species are most abundant within subtropical-temperate watermasses throughout their history. The near stasis in distribution within the thermocline and the subtropical convergence suggests the major morphological changes in Globorotalia (Globoconella) may have occurred through habitat subdivision rather than by vicariant shifts into new watermasses. At the Rio Grande Rise, in the South Atlantic, modern G. inflata is 0.66-0.84? more positive for delta18O than the most enriched coexisting Globigerinoides sacculifer and probably grows in the mid thermocline deeper than 325 m. All extinct globoconellid species have mean delta18O ratios 0.5-0.8? more positive than Globigerinoides trilobus and G. sacculifer and probably lived within the thermocline as well. Major events in skeletal evolution are poorly correlated with changes in delta18O in this group. These include evolutionary transitions to compressed, smooth-walled tests and acquisition of keels. In addition, morphological reversals from the umbilically-inflated G. conomiozea to biconvex G. pliozea and to unkeeled G. puncticulata occur in the absence of changes in delta18O signature. Instead, the ranges of delta18O between different species almost completely overlap once corrected for temporal changes in delta18O of sea water. Foraminifera morphologies have been widely considered to evolve in response to changes in watermasses or depth habitats. However, the variety of skeletal shapes in the globoconellid lineage apparently are not adaptations to a progressive radiation from the surface mixed layer into deeper waters.
Resumo:
We report well-dated Late Cretaceous and Early Tertiary precessional climatic cycles, recorded by rhythmic carbonate maxima and minima in South Atlantic deep sea sites. Spectral analyses of digitized sediment color, a suitable carbonate proxy, show prominent regularities in the spacing marl-carbonate beds. Magnetostratigraphic dating over a number of magnetic chrons constrains the duration of the cycles, which can be detected over at least 20 Myr of sedimentation at 7 coring locations. Their mean absolute period of 23.5 +/- 4.4kyr agrees closely with the predicted late Cretaceous precessional period of 20.8 kyr. Because they can be matched to a physical forcing mechanism with a known repeat time, the cycles offer a new high-resolution tool to measure rates of climate change before and after the Cretaceous-Tertiary (K/T) boundary. From counts of carbonate cycles, we derive the position of the K/T boundary within C29R at 350 kyr after the base of the reversal. The constancy of cycle thickness (linearly related to sedimentation rate) and amplitude up to the "boundary clay" does not give evidence for climate instability preceding the boundary. Orbital chronometry records a step-function decrease in sediment accumulation rate at the Cretaceous-Tertiary boundary that is consistent with a geologically instantaneous event.
Resumo:
DSDP Leg 73 sediment cores allow direct calibrations of magnetostratigraphy and biostratigraphy for much of the latest Cretaceous to Cenozoic in the mid-latitude South Atlantic Ocean. A complete record of the Cenozoic was not obtained, however, because strong dissolution, poor core recovery and intense core disturbance have masked the biostratigraphy or magnetostratigraphy over some intervals of all recovered sections. DSDP Leg 73 results show the following correlations: Early/middle Miocene in Chron 16 Oligocene/Miocene within Subchron C6CN Eocene/Oligocene within Subchron C13R Middle/late Eocene top of Chron C17 Early/late Paleocene top of Subchron C27N Cretaceous/Tertiary within Subchron C29R