26 resultados para Sostenibilità, Sviluppo sostenibile, "Time in Jazz", "Green Jazz"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkali phosphatase activity and hydrochemical structure of waters in the Barents and Norwegian seas were investigated. In a sea with the seasonal bioproduction cycle alkali phosphatase activity is also seasonal, rising with trophic level of waters. At the end of hydrological and biological winter activity is practically zero. Alkali phosphatase activity is especially important in summer, when plankton has consumed winter supply of phosphate in the euphotic layer and nutrient limitation of primary production begins. In summer production and destruction cycle, apparent time for recycling of phosphorus by phosphatase in suspended matter in the euphotic layer of the Barents Sea and Norwegian Sea averages from 7 to 30 hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate summer and fall residency and habitat selection by gray whales, Eschrichtius robustus, together with the biomass of benthic amphipod prey on the coastal feeding grounds along the Chukotka Peninsula. Thirteen gray whales were instrumented with satellite transmitters in September 2006 near the Chukotka Peninsula, Russia. Nine transmitters provided positions from whales for up to 81 days. The whales travelled within 5 km of the Chukotka coast for most of the period they were tracked with only occasional movements offshore. The average daily travel speeds were 23 km/day (range 9-53 km/day). Four of the whales had daily average travel speeds <1 km/day suggesting strong fidelity to the study area. The area containing 95% of the locations for individual whales during biweekly periods was on average 13,027 km**2 (range 7,097-15,896 km**2). More than 65% of all locations were in water <30 m, and between 45 and 70% of biweekly kernel home ranges were located in depths between 31 and 50 m. Benthic density of amphipods within the Bering Strait at depths <50 m was on average ~54 g wet wt/m**2 in 2006. It is likely that the abundant benthic biomass is more than sufficient forage to support the current gray whale population. The use of satellite telemetry in this study quantifies space use and movement patterns of gray whales along the Chukotka coast and identifies key feeding areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three pairs of Upper Cretaceous black shales and adjacent green claystones from Hole 530A were analyzed to compare types and amounts of organic matter and lipids and to seek information about their environments of deposition. The organic-carbon-rich black shales have C/N ratios nearly seven times those of the organic-carbon-lean green claystones. The lipid content of organic matter in the black shales is about ten times less than in adjacent green layers. Organic matter in both types of rocks is thermally immature, and distributions of alkanoic acids, alkanols, sterols, and alkanes contain large amounts of terrigenous components. Pristane/phytane ratios of less than one suggest that younger Turonian sediments were laid down under anoxic conditions, but ratios greater than one suggest that older Turonian Cenomanian deposits accumulated in a more oxic environment. Closely bedded green and black layers have very similar types of lipid distributions and differ primarily in concentrations, although black shales contain somewhat larger amounts of terrigenous lipid components. Geochemical and stratigraphic evidence suggests much of the organic matter in these samples originated on the African continental margin and was transported to the Angola Basin by turbidity flow. Rapid reburial of organic-carbon-rich sediments led to formation of the black shales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure and composition of sub-surface bottom sediments from the southwest Barents Sea have been under study. The study has revealed heterogeneity of sediment structure resulted from temporal irregularity and variability of sedimentation processes. The study of the heavy minerals from 0.1-0.01 mm grain size fraction has shown prevalence of green hornblende, epidote, garnet, and ilmenite in all types of sediments; these minerals are the basis of terrigenous-mineralogical province. At the same time in different areas local terrigenous-mineralogical associations have been identified. Clay mineral composition of in the sediments was quite uniform: biotite, chlorite, hydromica, smectite. Despite this, a number of features indicating initial stages of clay mineral transformation has been identified. Differences in material composition and structure of the studied sediments are associated with rapid change in paleogeographic situation on the land - ice cover melting on the Kola Peninsula and subsequent Holocene climatic situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perna viridis from the Bay of Jakarta was exposed to different concentrations (0, 21.6, 216 and 2160 mg/l) of PVC microplastic particles for 91 days in a controlled laboratory experiment. Particles were negatively buoyant, but were regularly resuspended from the sediment, mimicking tidal events. The particles were contaminated with the organic pollutant fluoranthene, except for one control group, which was exposed to the highest plastic concentration (2160 mg/l) but with clean particles. Within the 91 days survival was monitored. After 40 - 44 days of the exposure, physiological responses of all mussel individuals were measured. Respiration rates were measured as the decrease of oxygen in a sealed container in 20 minutes. Clearance rates were determined by measuring the depletion of algal cells in the water in 30 minutes. Byssus production was assessed by counting the number of newly formed byssus discs within 24 hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Asian green mussel Perna viridis is tolerant to environmental stress, but its robustness varies between populations from habitats that differ in quality. So far, it is unclear whether local adaptations through stressinduced selection or phenotypic plasticity are responsible for these inter-population differences. We tested for the relevance of both mechanisms by comparing survival under hypoxia in mussels that were transplanted from an anthropogenically impacted (Jakarta Bay, Indonesia) to a natural habitat (Lada Bay, Indonesia) and vice versa. Mussels were retrieved 8 weeks after transplantation and exposed to hypoxia in the laboratory. Additional hypoxia tests were conducted with juvenile mussels collected directly from both sites. To elucidate possible relationships between habitat quality and mussel tolerance, we monitored concentrations of inorganic nutrients, temperature, dissolved oxygen, salinity, phytoplankton density and the mussels' body condition index (BCI) for 20 months before, during and after the experiments. Survival under hypoxia depended mainly on the quality of the habitat where the mussels lived before the hypoxia tests and only to a small degree on their site of origin. Furthermore, stress tolerance was only higher in Jakarta than in Lada Bay mussels when the BCIs were substantially higher, which in turn correlated with the phytoplankton densities. We explain why phenotypic plasticity and high BCIs are more likely the causes of populationspecific differences in hypoxia tolerance in P. viridis than stress-induced selection for robust genotypes. This is relevant to understanding the role of P. viridis as mariculture organism in eutrophic ecosystems and invasive species in the (sub)tropical world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oceans take up more than 1 million tons of CO2 from the air per hour, about one-quarter of the anthropogenically released amount, leading to disrupted seawater chemistry due to increasing CO2 emissions. Based on the fossil fuel-intensive CO2 emission scenario (A1F1; Houghton et al., 2001), the H+ concentration or acidity of surface seawater will increase by about 150% (pH drop by 0.4) by the end of this century, the process known as ocean acidification (OA; Sabine et al., 2004; Doney et al., 2009; Gruber et al., 2012). Seawater pH is suggested to decrease faster in the coastal waters than in the pelagic oceans due to the interactions of hypoxia, respiration, and OA (Cai et al., 2011). Therefore, responses of coastal algae to OA are of general concern, considering the economic and social services provided by the coastal ecosystem that is adjacent to human living areas and that is dependent on coastal primary productivity. On the other hand, dynamic environmental changes in the coastal waters can interact with OA (Beardall et al., 2009).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Euryhaline decapod crustaceans possess an efficient regulation apparatus located in the gill epithelia, providing a high adaptation potential to varying environmental abiotic conditions. Even though many studies focussed on the osmoregulatory capacity of the gills, acid-base regulatory mechanisms have obtained much less attention. In the present study, underlying principles and effects of elevated pCO2 on acid-base regulatory patterns were investigated in the green crab Carcinus maenas acclimated to diluted seawater. In gill perfusion experiments, all investigated gills 4-9 were observed to up-regulate the pH of the hemolymph by 0.1-0.2 units. Anterior gills, especially gill 4, were identified to be most efficient in the equivalent proton excretion rate. Ammonia excretion rates mirrored this pattern among gills, indicating a linkage between both processes. In specimen exposed to elevated pCO2 levels for at least 7 days, mimicking a future ocean scenario as predicted until the year 2300, hemolymph K+ and ammonia concentrations were significantly elevated, and an increased ammonia excretion rate was observed. A detailed quantitative gene expression analysis revealed that upon elevated pCO2 exposure, mRNA levels of transcripts hypothesized to be involved in ammonia and acid-base regulation (Rhesus-like protein, membrane-bound carbonic anhydrase, Na+/K+-ATPase) were affected predominantly in the non-osmoregulating anterior gills.