583 resultados para Sonic Hedgehog
Resumo:
During Leg 127, the formation microscanner (FMS) logging tool was used as part of an Ocean Drilling Program (ODP) logging program for only the second time in the history of the program. Resistivity images, also known as FMS logs, were obtained at Sites 794 and 797 that covered nearly the complete Yamato Basin sedimentary sequence to a depth below 500 mbsf. The FMS images from these two sites at the northeastern and southwestern corners of the Yamato Basin thus were amenable to comparison. A strong visual correlation was noticed between the FMS logs taken in Holes 794B and 797C in an upper Miocene interval (350-384 mbsf), although the two sites are approximately 360 km apart. In this interval, the FMS logs showed a series of more resistive thin beds (10-200 cm) alternating with relatively lower resistivity layers: a pattern that was manifested by alternating dark (low resistivity) and light (high resistivity) banding in the FMS images. We attribute this layering to interbedding of chert and porcellanite layers, a common lithologic sequence throughout Japan (Tada and Iijima, 1983, doi:10.1306/212F82E7-2B24-11D7-8648000102C1865D). Spatial frequency analysis of this interval of dominant dark-light banding showed spatial cycles of period of 1.1 to 1.3 and 0.6 m. This pronounced layering and the correlation between the two sites terminate at 384 mbsf, coincident with the opal-CT to quartz transition at Site 794. We think the correlation in the FMS logs might well extend earlier in the middle Miocene, but the opal-CT to quartz transition obscures this layering below 384 mbsf. Although 34 m is only a small part of the core recovered at these two sites, it is significant because it represents an area of extremely poor core recovery and an interval for which a near-depositional hiatus was postulated for Site 797, but not for Site 794.
Resumo:
Continuous cores drilled during the Bahamas Drilling Project (BDP) and the Ocean Drilling Program (ODP) Leg 166 along a transect from the top of Great Bahama Bank to the basin in the Straits of Florida provide a unique data set to test the assumption in seismic stratigraphy that seismic reflections are time lines and, thus, have a chronostratigraphic significance. Seismic reflections that are identified as seismic sequence boundaries (SSBs) were dated by means of biostratigraphy in the five ODP sites and by a combination of biostratigraphy, magnetostratigraphy and Sr isotope stratigraphy in the two BDP sites. The seismic reflection horizons are carried across a variety of facies belts from shallow-water carbonates over slope carbonates to drift deposits in the Straits of Florida. Within this system 17 SSBs were identified and dated. Despite the fact that the seismic reflections cross several facies belts, their ages remain remarkably constant. The average offset in all sites is 0.38 Myr. In no cases do the seismic reflections cut across time lines. The age differences are the combined result of the biostratigraphic sampling frequency, the spacing of marker species that required extrapolation of ages, and the resolution of the seismic data. In addition, uncertainties of age determination in the proximal sites where age-diagnostic fauna are rare add to the age differences between sites. Therefore, it can be concluded that the seismic reflections, which mark the SSBs along the Bahamas Transect, are time lines and can be used as stratigraphic markers. This finding implies that depositional surfaces are preferentially imaged by reflected seismic waves and that an impedance contrast exists across these surfaces. Facies successions across the sequence boundaries indicate that the sequence boundaries coincide with the change of deposition from times of high to low sea level. In the carbonate setting of Great Bahama Bank, sea-level changes produce changes in sediment composition, sedimentation rate and diagenesis from the platform top to the basin. The combination of these factors generates differences in sonic velocity and, thus, in impedance that cause the seismic reflection. The impedance contrasts decrease from the proximal to the distal sites, which is reflected in the seismic data by a decrease of the seismic amplitude in the basinal area.
Resumo:
Controls of sediment dynamics at the Galician continental slope (NW Iberia) during the past 30 ka were reconstructed from three new gravity cores (GeoB11035-1, 130206-1, 13071-1) based on sedimentological (e.g. sortable silt, IRD), micropalaeontological (e.g. coccoliths), geochemical (AMS 14C, XRF) and geophysical (e.g. magnetic susceptibility) diagnostics. The data are consistent with existing regional knowledge that, during marine isotope stages 3-1, variations in detrital input, marine productivity and sea level were the essential drivers of sediment availability on the slope, whereas deep-water current velocities controlled sediment deposition: (1) the period prior to 30 cal ka BP is characterized by minor but systematic variations in various proxies which can be associated with D-O cycles; (2) between 30 and 18 cal ka BP, high detrital input and steady slope-parallel currents led to constant sedimentation; (3) from the LGM until 10 cal ka BP, the shelf-transgressive sea-level rise increased the detrital particle flux; sedimentation was influenced by significantly enhanced deep-water circulation during the Bølling/Allerød, and subsequent slowing during the Younger Dryas; (4) an abrupt and lasting change to hemipelagic sedimentation at ca. 10 cal ka BP was probably due to Holocene warming and decelerated transgression; (5) after 5 cal ka BP, additional input of detrital material to the slope is plausibly linked to the evolution of fine-grained depocentres on the Galician shelf, this being the first report of this close shelf-slope sedimentary linkage off NW Iberia. Furthermore, there is novel evidence of the nowadays strong outer shelf Iberian Poleward Current becoming established at about 15.5 cal ka BP. The data also demonstrate that small-scale morphologic features and local pathways of sediment export from the neighbouring shelf play an important role for sediment distribution on the NW Iberian slope, including a hitherto unknown sediment conduit off the Ría de Arousa. By implication, the impact of local morphology on along- and down-slope sediment dynamics is more complex than commonly considered, and deserves future attention.
Resumo:
The Pliocene-Quaternary sediments that we drilled at eight sites in the Gulf of California consist of silty clays to clayey silts, diatomaceous oozes, and mixtures of both types. In this chapter I have summarized various measurements of their physical properties, relating this information to burial depth and effective overburden pressure. Rapid deposition and frequent intercalations of mud turbidites may cause underconsolidation in some cases; overconsolidation probably can be excluded. General lithification begins at depths between 200 and 300 meters sub-bottom, at porosities between 55 and 60% (for silty clays) and as high as 70% (for diatomaceous ooze). Diatom-rich sediments have low strength and very high porosities (70-90%) and can maintain this state to a depth of nearly 400 meters (where the overburden pressure = 1.4 MPa). The field compressibility curves of all sites are compared to data published earlier. Where sediments are affected by basaltic sills, these curves clearly show the effects of additional loading and thermal stress (diagenesis near the contacts). Strength measurements on well-preserved hydraulic piston cores yielded results similar to those obtained on selected samples from standard drilling. Volumetric shrinkage dropped to low values at 100 to 400 meters burial depth (0.3 to 2.0 MPa overburden pressure). Porosity after shrinkage depends on the composition of sediments.