37 resultados para Soil layer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C/m**2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C/m**2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C/m**2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifty samples of Roman time soil preserved under the thick ash layer of the A.D.79 eruption of Mt Vesuvius were studied by pollen analysis: 33 samples from a former vineyard surrounding a Villa Rustica at Boscoreale (excavation site 40 x 50 m), 13 samples taken along the 60 m long swimming pool in the sculpture garden of the Villa of Poppaea at Oplontis, and four samples from the formal garden (12.4 x 17.5 m) of the House of the Gold Bracelet in Pompeii. To avoid contamination with modern pollen all samples were taken immediately after uncovering a new portion of the A.D. 79 soil. For comparison also samples of modern Italian soils were studied. Using standard methods for pollen preparation the pollen content of 15 of the archaeological samples proved to be too little to reach a pollen sum of more than 100 grains. The pollen spectra of these samples are not shown in the pollen tables. (Flotation with a sodium tungstate solution, Na2WO4, D = 2.05, following treatment with HCl and NaOH would probably have given a somewhat better result. This method was, however, not available as too expensive at that time.) Although the archaeological samples were taken a few meters apart their pollen values differ very much from one sample to the other. E.g., at Boscoreale (SW quarter). the pollen values of Pinus range from 1.5 to 54.5% resp. from 1 to 244 pine pollen grains per 1 gram of soil, the extremes even found under pine trees. Vitis pollen was present in 7 of the 11 vineyard samples from Boscoreale (NE quarter) only. Although a maximum of 21.7% is reached, the values of Vitis are mostly below 1.5%. Even the values of common weeds differ very much, not only at Boscoreale, but also at the other two sites. The pollen concentration values show similar variations: 3 to 3053 grains and spores were found in 1 g of soil. The mean value (290) is much less than the number of pollen grains, which would fall on 1 cm2 of soil surface during one year. In contrast, the pollen and spore concentrations of the recent soil samples, treated in exactly the same manner, range from 9313 to almost 80000 grains per 1 g of soil. Evidently most of the Roman time pollen has disappeared since its deposition, the reasons not being clear. Not even species which are known to have been cultivated in the garden of Oplontis, like Citrus and Nerium, plant species with easily distinguishable pollen grains, could be traced by pollen analysis. The loss of most of the pollen grains originally contained in the soil prohibits any detailed interpretation of the Pompeian pollen data. The pollen counts merely name plant species which grew in the region, but not necessarily on the excavated plots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the Mean Transit Time and Mixing Model Analysis methods are combined to unravel the runoff generation process of the San Francisco River basin (73.5 km**2) situated on the Amazonian side of the Cordillera Real in the southernmost Andes of Ecuador. The montane basin is covered with cloud forest, sub-páramo, pasture and ferns. Nested sampling was applied for the collection of streamwater samples and discharge measurements in the main tributaries and outlet of the basin, and for the collection of soil and rock water samples. Weekly to biweekly water grab samples were taken at all stations in the period April 2007-November 2008. Hydrometric data, Mean Transit Time and Mixing Model Analysis allowed preliminary evaluation of the processes controlling the runoff in the San Francisco River basin. Results suggest that flow during dry conditions mainly consists of lateral flow through the C-horizon and cracks in the top weathered bedrock layer, and that all subcatchments have an important contribution of this deep water to runoff, no matter whether pristine or deforested. During normal to low precipitation intensities, when antecedent soil moisture conditions favour water infiltration, vertical flow paths to deeper soil horizons with subsequent lateral subsurface flow contribute most to streamflow. Under wet conditions in forested catchments, streamflow is controlled by near surface lateral flow through the organic horizon. Exceptionally, saturation excess overland flow occurs. By absence of the litter layer in pasture, streamflow under wet conditions originates from the A horizon, and overland flow.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-latitude ecosystems store large amounts of carbon (C); however, the C storage of these ecosystems is under threat from both climate warming and increased levels of herbivory. In this study we examined the combined role of herbivores and climate warming as. drivers of CO2 fluxes in two typical high-latitude habitats (mesic heath and wet meadow). We hypothesized that both herbivory and climate warming would reduce the C sink strength of Arctic tundra through their combined effects on plant biomass and gross ecosystem photosynthesis and on decomposition rates and the abiotic environment. To test this hypothesis we employed experimental warming (via International Tundra Experiment [ITEX] chambers) and grazing (via captive Barnacle Geese) in a three-year factorial field experiment. Ecosystem CO2 fluxes (net ecosystem exchange of CO2, ecosystem respiration, and gross ecosystem photosynthesis) were measured in all treatments at varying intensity over the three growing seasons to capture the impact of the treatments on a range of temporal scales (diurnal, seasonal, and interannual). Grazing and warming treatments had markedly different effects on CO2 fluxes in the two tundra habitats. Grazing caused a strong reduction in CO2 assimilation in the wet meadow, while warming reduced CO2 efflux from the mesic heath. Treatment effects on net ecosystem exchange largely derived from the modification of gross ecosystem photosynthesis rather than ecosystem respiration. In this study we have demonstrated that on the habitat scale, grazing by geese is a strong driver of net ecosystem exchange of CO2, with the potential to reduce the CO2 sink strength of Arctic ecosystems. Our results highlight that the large reduction in plant biomass due to goose grazing in the Arctic noted in several studies can alter the C balance of wet tundra ecosystems. We conclude that herbivory will modulate direct climate warming responses of Arctic tundra with implications for the ecosystem C balance; however, the magnitude and direction of the response will be habitat-specific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twelve permafrost cores and active layer pits were drilled/dug on Herschel Island in order to estimate the soil organic carbon and total nitrogen contents in the first 30, 100 and 200 cm of ground. The data are the core information obtained during sampling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded for Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated. The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the thaw period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from a large scale soil mapping on the North Frisian mainland indicate, that field characteristics, particularly the grain-size, bedding, and degree of compaction, with in general determine the soil units mapped, are closely correlated with each other and with other field and laboratory data. Exchangable ions and the Ca/Mg-ratio, however, indicate no explainable connections with the soil units and with most of the other field characteristics but are determined postsedimentarily by processes of the development of soil and landscape, such as desalting and decalcification, silicate weathering, fresh- and salt-water innundations, salty precipitations, salty groundwater and fertilization. Therefore the Ca/Mg-ratio is not suitable to differentiate between more clayey compacted Knick-marsh soils and less clayey permeable Klei-marsh soils. The results confirm that marsh-soils may only be classified and mapped by means of all available field-data which have to be supplemented by laboratory investigations.