215 resultados para Shinran, 1173-1263


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that the Early Eocene Climatic Optimum (EECO) was preceded by a series of short-lived global warming events, known as hyperthermals. Here we present high-resolution benthic stable carbon and oxygen isotope records from ODP Sites 1262 and 1263 (Walvis Ridge, SE Atlantic) between ~54 and ~52 million years ago, tightly constraining the character, timing, and magnitude of six prominent hyperthermal events. These events, which include Eocene Thermal Maximum (ETM) 2 and 3, are studied in relation to orbital forcing and long-term trends. Our findings reveal an almost linear relationship between d13C and d18O for all these hyperthermals, indicating that the eccentricity-paced co-variance between deep-sea temperature changes and extreme perturbations in the exogenic carbon pool persisted during these events towards the onset of the EECO, in accord with previous observations for the Paleocene Eocene Thermal Maximum (PETM) and ETM2. The covariance of d13C and d18O during H2 and I2, which are the second pulses of the "paired" hyperthermal events ETM2-H2 and I1-I2, deviates with respect to the other events. We hypothesize that this could relate to a relatively higher contribution of an isotopically heavier source of carbon, such as peat or permafrost, and/or to climate feedbacks/local changes in circulation. Finally, the d18O records of the two sites show a systematic offset with on average 0.2 per mil heavier values for the shallower Site 1263, which we link to a slightly heavier isotopic composition of the intermediate water mass reaching the northeastern flank of the Walvis Ridge compared to that of the deeper northwestern water mass at Site 1262.