22 resultados para Semmler, Willi
Resumo:
Aim Palaeoecological reconstructions document past vegetation change with estimates of rapid rates of changing species distribution limits that are often not matched by model simulations of climate-driven vegetation dynamics. Genetic surveys of extant plant populations have yielded new insight into continental vegetation histories, challenging traditional interpretations that had been based on pollen data. Our aim is to examine an updated continental pollen data set from Europe in the light of the new ideas about vegetation dynamics emerging from genetic research and vegetation modelling studies. Location Europe Methods: We use pollen data from the European Pollen Database (EPD) to construct interpolated maps of pollen percentages documenting change in distribution and abundance of major plant genera and the grass family in Europe over the last 15,000 years. Results: Our analyses confirm high rates of postglacial spread with at least 1000 metres per year for Corylus, Ulmus and Alnus and average rates of 400 metres per year for Tilia, Quercus, Fagus and Carpinus. The late Holocene expansions of Picea and Fagus populations in many European regions cannot be explained by migrational lag. Both taxa shift their population centres towards the Atlantic coast suggesting that climate may have played a role in the timing of their expansions. The slowest rates of spread were reconstructed for Abies. Main conclusions: The calculated rates of postglacial plant spread are higher in Europe than those from North America, which may be due to more rapid shifts in climate mediated by the Gulf Stream and westerly winds. Late Holocene anthropogenic land use practices in Europe had major effects on individual taxa, which in combination with climate change contributed to shifts in areas of abundance and dominance. The high rates of spread calculated from the European pollen data are consistent with the common tree species rapidly tracking early Holocene climate change and contribute to the debate on the consequences of global warming for plant distributions.
Resumo:
Past changes in plant and landscape diversity can be evaluated through pollen analysis, however, pollen based diversity indexes are potentially biased by differential pollen production and deposition. Studies examining the relationship between pollen and landscape diversity are therefore needed. The aim of this study is to evaluate how different pollen based indexes capture aspects of landscape diversity. Pollen counts were obtained from surface samples of 50 small to medium sized lakes in Brandenburg (Northeast Germany) and compiled into two sets, with one containing all pollen counts from terrestrial plants and the second restricted to wind-pollinated taxa. Both sets were adjusted for the pollen production/dispersal bias using the REVEALS model. A high resolution biotope map was used to extract the density of total biotopes and different biotopes per area as parameters describing landscape diversity. In addition tree species diversity was obtained from forest inventory data. The Shannon index and the number of taxa in a sample of 10 pollen grains are highly correlated and provide a useful measure of pollen type diversity which corresponds best to landscape diversity within one km of the lake and the proportion of non-forested area within seven km. Adjustments of the pollen production/dispersal bias only slightly improve the relationships between pollen diversity and landscape diversity for the restricted dataset as well as for the forest inventory data and corresponding pollen types. Using rarefaction analysis, we propose the following convention: pollen type diversity is represented by the number of types in a small sample (low count e.g. 10), pollen type richness is the number of types in a large sample (high count e.g. 500) and pollen sample evenness is characterized by the ratio of the two. Synthesis. Pollen type diversity is a robust index that captures vegetation structure and landscape diversity. It is ideally suited for between site comparisons as it does not require high pollen counts. In concert with pollen type richness and evenness, it helps evaluating the effect of climate change and human land use on vegetation structure on long timescales.