102 resultados para Seismic refraction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decade pockmarks have proven to be important seabed features that provide information about fluid flow on continental margins. Their formation and dynamics are still poorly constrained due to the lack of proper three dimensional imaging of their internal structure. Numerous fluid escape features provide evidence for an active fluid-flow system on the Norwegian margin, specifically in the Nyegga region. In June-July 2006 a high-resolution seismic experiment using Ocean Bottom Seismometers (OBS) was carried out to investigate the detailed 3D structure of a pockmark named G11 in the region. An array of 14 OBS was deployed across the pockmark with 1 m location accuracy. Shots fired from surface towed mini GI guns were also recorded on a near surface hydrophone streamer. Several reflectors of high amplitude and reverse polarity are observed on the profiles indicating the presence of gas. Gas hydrates were recovered with gravity cores from less than a meter below the seafloor during the cruise. Indications of gas at shallow depths in the hydrate stability field show that methane is able to escape through the water-saturated sediments in the chimney without being entirely converted into gas hydrate. An initial 2D raytraced forward model of some of the P wave data along a line running NE-SW across the G11 pockmark shows, a gradual increase in velocity between the seafloor and a gas charged zone lying at ~300 m depth below the seabed. The traveltime fit is improved if the pockmark is underlain by velocities higher than in the surrounding layer corresponding to a pipe which ascends from the gas zone, to where it terminates in the pockmark as seen in the reflection profiles. This could be due to the presence of hydrates or carbonates within the sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compressional and the shear wave velocities in the Greenland ice sheet are derived from seismic records of the EGIG 1959. Further the variation of velocities in the firn and the dependance of Poisson's ratio from depth are determined. At Station Centrale, two P-waves are recorded from underground layers. Their velocities show that the ice basement consists of crystalline rocks. The P-wave velocities derived from reflections agree well with those obtained by refraction shooting. From this agreement results that the ice is ± homogenous and ± isotropic for Pwaves. The elastic constants for isotropic ice are calculated. Finally the temperature dependence of the velocities is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressional (Vp) and shear (Vs) wave velocities have been measured to 1.0 kbar for 14 cores of well-consolidated sedimentary rock from Atlantic and Pacific sites of the Deep Sea Drilling Project. The range of VP (2.05-5.38 km/sec at 0.5 kbar) shows significant overlap with the range of oceanic layer-2 seismic velocities determined by marine refraction surveys, suggesting that sedimentary rocks may, in some regions, constitute the upper portion of layer 2. Differing linear relationships between VP and Vs for basalts and sedimentary rocks, however, may provide a method of resolving layer-2 composition. This is illustra ted for a refraction survey site on the flank of the Mid-Atlantic Ridge where layer-2 velocities agree with basalt, and two sites on the Saya de Malha Bank in the Indian Ocean where layer-2 velocities appear to represent sedimentary rock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic velocities have been measured at confining pressures to 600 MPa for eight samples of sheeted dike rock obtained from Hole 504B during Leg ODP 111. The compressional- and shear-wave velocities are, in general, higher than the velocities measured in overlying dike rocks obtained from the hole during DSDP Leg 83. The velocity gradients observed in Layer 2C result from decreasing porosity with depth and increasing metamorphic grade. The laboratory-measured velocities of the Leg 111 dike rocks are similar to those of dike rocks reported for the Bay of Islands, Samail, and Troodos ophiolites.