806 resultados para Sea surface Temperatures
Resumo:
A Porites coral collected from Xisha Island, South China Sea, represents a skeleton secreted in the period from 1906 to 1994. The Sr contents of the coral vary linearly with the instrument-measured sea-surface temperature (SST), giving a Sr thermometer: SST = -1.9658 x Sr + 193.26. The reconstructed SST data show that the late 20th century was warmer (about 1°C) than the early 20th century and that two cooling (1915/1916 and 1947/1948) and three warming (1935/1936, 1960/1961, and 1976/1977) shifts occurred in the century. The temperature shifts are more pronounced for winters, implying a close effect of the west Pacific warm pool and Asian monsoon and suggesting that the former is a primary force controlling the climatic system of the region. Results of this study and previously published data indicate a close link of temperature shifts between the boreal summer and the austral winter or the boreal winter and the austral summer. The annual SST anomalies in the South China Sea and the South Pacific reveal the existence of harmonic but opposite SST variations between the two regions. On the decadal scale the comparative annual SST anomalies for the South China Sea and for the equatorial west Pacific show a similarity in temperature variations, implying that the South China Sea climate is coherent with climatic regime of the tropical west Pacific.
Resumo:
In order to study the modern sea surface characteristics of the sub-polar North Pacific and the Bering Sea, i.e. sea surface temperature (SST) and sea ice cover, surface sediments recovered during the RV Sonne Expedition 202 in 2009 were analysed. To distinguish between marine and terrestrial organic carbon, hydrogen index values, long chain n-alkanes and specific sterols have been determined. The results show that in the Bering Sea, especially on the sea slope, the organic carbon source is mainly caused by high primary production. In the North Pacific, on the other hand, the organic material originates predominantly from terrestrial higher plants, probably related to dust input from Asia. SST has been reconstructed using the modified alkenone unsaturation index. Calibration from Müller et al. (1998, doi:10.1016/S0016-7037(98)00097-0) offers the most reliable estimate of mean annual temperature in the central North Pacific but does not correlate with mean annual temperature throughout the study area. In the eastern North Pacific and the Bering Sea, the Sikes et al. (1997, doi:10.1016/S0016-7037(97)00017-3) calibration seems to be more accurate and matches summer SST. The distribution of the novel sea ice proxy IP25 (highly branched C25 isoprenoid alkene) in surface sediments is in accord with the modern spring sea ice edge and shows the potential of this proxy to track past variation in sea ice cover in the study area.
Resumo:
The reconstruction of ocean history employs a large variety of methods with origins in the biological, chemical, and physical sciences, and uses modern statistical techniques for the interpretation of extensive and complex data sets. Various sediment properties deliver useful information for reconstructing environmental parameters. Those properties that have a close relationship to environmental parameters are called ''proxy variables'' (''proxies'' for short). Proxies are measurable descriptors for desired (but unobservable) variables. Surface water temperature is probably the most important parameter for describing the conditions of past oceans and is crucial for climate modelling. Proxies for temperature are: abundance of microfossils dwelling in surface waters, oxygen isotope composition of planktic foraminifers, the ratio of magnesium or strontium to calcium in calcareous shells or the ratio of certain organic molecules (e.g. alkenones produced by coccolithophorids). Surface water salinity, which is important in modelling of ocean circulation, is much more difficult to reconstruct. At present there is no established method for a direct determination of this parameter. Measurements associated with the paleochemistry of bottom waters to reconstruct bottom water age and flow are made on benthic foraminifers, ostracodes, and deep-sea corals. Important geochemical tracers are d13C and Cd/Ca ratios. When using benthic foraminifers, knowledge of the sediment depth habitat of species is crucial. Reconstructions of productivity patterns are of great interest because of important links to current patterns, mixing of water masses, wind, the global carbon cycle, and biogeography. Productivity is reflected in the flux of carbon into the sediment. There are a number of fluxes other than those of organic carbon that can be useful in assessing productivity fluctuations. Among others, carbonate and opal flux have been used, as well as particulate barite. Furthermore, microfossil assemblages contain clues to the intensity of production as some species occur preferentially in high-productivity regions while others avoid these. One marker for the fertility of sub-surface waters (that is, nutrient availability) is the carbon isotope ratio within that water (13C/12C, expressed as d13C). Carbon isotope ratios in today's ocean are negatively correlated with nitrate and phosphate contents. Another tracer of phosphate content in ocean waters is the Cd/Ca ratio. The correlation between this ratio and phosphate concentrations is quite well documented. A rather new development to obtain clues on ocean fertility (nitrate utilization) is the analysis of the 15N/14N ratio in organic matter. The fractionation dynamics are analogous to those of carbon isotopes. These various ratios are captured within the organisms growing within the tagged water. A number of reconstructions of the partial pressure of CO2 have been attempted using d13C differences between planktic and benthic foraminifers and d13C values of bulk organic material or individual organic components. To define the carbon system in sea water, two elements of the system have to be known in addition to temperature. These can be any combination of total CO2 , alkalinity, or pH. To reconstruct pH, the boron isotope composition of carbonates has been used. Ba patterns have been used to infer the distribution of alkalinity in past oceans. Information relating to atmospheric circulationand climate is transported to the ocean by wind or rivers, in the form of minerals or as plant andanimal remains. The most useful tracers in this respect are silt-sized particles and pollen.
Resumo:
Three mid-Holocene sea surface temperature (SST) records spanning more than 30 years were reconstructed for the northern South China Sea using Sr/Ca ratios in Porites corals. The results indicate warmer than present climates between circa 6100 yr B.P. and circa 6500 yr B.P. with the mid-Holocene average minimum monthly winter SSTs, the average maximum monthly summer SSTs, and the average annual SSTs being about 0.5°-1.4°C, 0°-2.0°C, and 0.2°-1.5°C higher, respectively, than they were during 1970-1994. Summer SSTs decrease from circa 6500 yr B.P. to circa 6100 yr B.P. with a minimum centered at circa 6300 yr B.P. The higher average summer SSTs are consistent with a stronger summer monsoon during the mid-Holocene, and the decreasing trend indicates a secular decrease of summer monsoon strength, which reflects the change in summer insolation in the Northern Hemisphere. El Niño-Southern Oscillation (ENSO) cycles were apparent in both the mid-Holocene coral and modern instrumental records. However, the ENSO variability in the mid-Holocene SSTs was weaker than that in the modern record, and the SST record with the highest summer temperatures from circa 6460 yr B.P. to 6496 yr B.P. shows no robust ENSO cycle. This agrees with other studies that indicate that stronger summer monsoon circulation may have been associated with suppressed ENSO variability during the mid-Holocene.