159 resultados para SURFACE RESPONSE
Resumo:
The present study on ODP Leg 151 Hole 907A combines a detailed analysis of marine palynomorphs (dinoflagellate cysts, prasinophytes, and acritarchs) and a low-resolution alkenone-based sea-surface temperature (SST) record for the interval between 14.5 and 2.5 Ma, and allows to investigate the relationship between palynomorph assemblages and the paleoenvironmental evolution of the Iceland Sea. A high marine productivity is indicated in the Middle Miocene, and palynomorphs and SSTs both mirror the subsequent long-term Neogene climate deterioration. The diverse Middle Miocene palynomorph assemblages clearly diminish towards the impoverished assemblages of the Late Pliocene; parallel with a somewhat gradual decrease of SSTs being as high as 20 °C at ~13.5 Ma to around 8 °C at ~3 Ma. Superimposed, palynomorph assemblages not only reflect Middle to Late Miocene climate variability partly coinciding with the short-lived global Miocene isotope events (Mi-events), but also the initiation of a proto-thermohaline circulation across the Middle Miocene Climate Transition, which led to increased meridionality in the Nordic Seas. Last occurrences of species cluster during three events in the Late Miocene to Early Pliocene and are ascribed to the progressive strengthening and freshening of the proto-East Greenland Current towards modern conditions. A significant high latitude cooling between 6.5 and 6 Ma is depicted by the supraregional "Decahedrella event" coeval with lowest Miocene productivity and a SST decline. In the Early Pliocene, a transient warming is accompanied by surface water stratification and increased productivity that likely reflects a high latitude response to the global biogenic bloom. The succeeding crash in palynomorph accumulation, and a subsequent interval virtually barren of marine palynomorphs may be attributed to enhanced bottom water oxygenation and substantial sea ice cover, and indicates that conditions seriously affecting marine productivity in the Iceland Sea were already established well before the marked expansion of the Greenland Ice Sheet at 3.3 Ma.
Resumo:
The ubiquitous marine trace gas dimethyl sulfide (DMS) comprises the greatest natural source of sulfur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short-term response of DMS production and cycling and that of its algal precursor dimethyl sulfoniopropionate (DMSP) to elevated carbon dioxide (CO2) and ocean acidification (OA) in five 96 h shipboard bioassay experiments. Experiments were performed in June and July 2011, using water collected from contrasting sites in NW European waters (Outer Hebrides, Irish Sea, Bay of Biscay, North Sea). Concentrations of DMS and DMSP, alongside rates of DMSP synthesis and DMS production and consumption, were determined during all experiments for ambient CO2 and three high-CO2 treatments (550, 750, 1000 µatm). In general, the response to OA throughout this region showed little variation, despite encompassing a range of biological and biogeochemical conditions. We observed consistent and marked increases in DMS concentrations relative to ambient controls (110% (28-223%) at 550 µatm, 153% (56-295%) at 750 µatm and 225% (79-413%) at 1000 µatm), and decreases in DMSP concentrations (28% (18-40%) at 550 µatm, 44% (18-64%) at 750 µatm and 52% (24-72%) at 1000 µatm). Significant decreases in DMSP synthesis rate constants (µDMSP /d) and DMSP production rates (nmol/d) were observed in two experiments (7-90% decrease), whilst the response under high CO2 from the remaining experiments was generally indistinguishable from ambient controls. Rates of bacterial DMS gross consumption and production gave weak and inconsistent responses to high CO2. The variables and rates we report increase our understanding of the processes behind the response to OA. This could provide the opportunity to improve upon mesocosm-derived empirical modelling relationships and to move towards a mechanistic approach for predicting future DMS concentrations.
Resumo:
A wealth of sedimentary records aimed at reconstructing late Quaternary changes in productivity and temperature have been devoted to understanding linkages between the Indo-Pacific Warm Pool (IPWP) and other distant oceanic areas. Most of these reconstructions are based, however, on biogeochemical and sedimentological proxies, with comparatively less attention devoted to microfossils. A high-resolution (<1 ka) study of diatom concentrations and the community at site GeoB10038-4, recovered off southern Sumatra (ca. 6°S, 103°E), closely tracks the variations of diatom concentrations in the westernmost IPWP during the last glacial-interglacial cycle. The diatom record provides evidence that diatom paleoproductivity was highest during interglacials, primarily due to the input of lithogenics and nutrients following the rise in sea level after full glacials. In addition, the co-variation of total diatom concentration and Northern Hemisphere forcing for Marine Isotope Stage 5 suggests a direct response of diatom productivity and upwelling intensity to boreal summer insolation. Temporal shifts of the diverse diatom community at site GeoB10038-4 correspond well with the present-day seasonal monsoon pattern and the strengthening and weakening phases of upwelling along the southern coast of Sumatra. Resting spores of Chaetoceros, typical of nutrient-rich waters, were dominant during periods of highest diatom paleoproductivity and responded to the strengthening of the SE monsoon, while diatoms of oligotrophic to mesotrophic waters characterized intermonsoon periods. The close correspondence between the dominance of upwelling diatoms and the boreal summer insolation resembles the present-day dynamics of diatom production. The observed interglacial highs and glacial lows of diatom productivity at site GeoB10038-4 is a unique pattern in the late Quaternary tropics.
Resumo:
Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C (epsilon p) in a central equatorial Pacific sediment core that spans the last ~255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic compostion of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon p, derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 (c e) based on a new, site-specific calibration of the relationship between epsilon p and c e. The calibration was based on reassessment of existing epsilon p versus c e data, which support a physiologically based model in which epsilon p is inversely related to c e. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index UK 37. Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon p and 1/c e. These are discussed in detail and it is concluded that the observed record of epsilon p most probably reflects significant variations in Delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from ~110 µatm during glacial intervals (ocean > atmosphere) to ~60 µatm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p < 0.01) inverse correlations of Delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.
Resumo:
Seasonal patterns in hydrography, partial pressure of CO2, fCO2, pHt, total alkalinity, AT, total dissolved inorganic carbon, CT, nutrients, and chlorophyll a were measured in surface waters on monthly cruises at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) located in the northeast Atlantic subtropical gyre. With over 5 years of oceanographic data starting in 1996, seasonal and interannual trends of CO2 species and air-sea exchange of CO2 were determined. Net CO2 fluxes show this area acts as a minor source of CO2, with an average outgassing value of 179 mmol CO2/m**2 yr controlled by the dominant trade winds blowing from May to August. The effect of short-term wind variability on the CO2 flux has been addressed by increasing air-sea fluxes by 63% for 6-hourly sampling frequency. The processes governing the monthly variations of CT have been determined. From March to October, when CT decreases, mixing at the base of the mixed layer (11.5 ± 1.5 mmol/m**3) is compensated by air-sea exchange, and a net organic production of 25.5 ± 5.7 mmol/m**3 is estimated. On an annual scale, biological drawdown accounts for the decrease in inorganic carbon from March to October, while mixing processes control the CT increase from October to the end of autumn. After removing seasonality variability, fCO2sw increases at a rate of 0.71 ± 5.1 µatm/yr, and as a response to the atmospheric trend, inorganic carbon increases at a rate of 0.39 ± 1.6 µmol/kg yr.
Resumo:
During the six Heinrich Events of the last 70 ka episodic calving from the circum-Atlantic ice sheets released large numbers of icebergs into the North Atlantic. These icebergs and associated melt-water flux are hypothesized to have led to a shutdown of Atlantic Meridional Overturning Circulation (AMOC) and severe cooling in large parts of the Northern Hemisphere. However, due to the limited availability of high-resolution records the magnitude sea surface temperature (SST) changes related to the impact of Heinrich Events on the mid-latitude North Atlantic is poorly constrained. Here we present a record of UK37'-based SSTs derived from sediments of Integrated Ocean Drilling Project (IODP) Site U1313, located at the southern end of the ice-rafted debris (IRD)-belt in the mid-latitude North Atlantic (41°N). We demonstrate that all six Heinrich Events are associated with a rapid warming of surface waters by 2 to 4°C in a few thousand years. The presence of IRD leaves no doubt about the simultaneous timing and correlation between rapid surface water warming and Heinrich Events. We argue that this warming in the mid-latitude North Atlantic is related to a northward expansion of the subtropical gyre during Heinrich Events. As a wide-range of studies demonstrated that in the central IRD-belt Heinrich Events are associated with low SSTs, these results thus identify an anti-phased (seesaw) pattern in SSTs during Heinrich Events between the mid-latitude (warm) and northern North Atlantic (cold). This highlights the complex response of surface water characteristics in the North Atlantic to Heinrich Events that is poorly reproduced by fresh water hosing experiments and challenges the widely accepted view that within the IRD-belt of the North Atlantic Heinrich Events coincide with periods of low SSTs.
Resumo:
Understanding the distribution and foraging ecology of major consumers within pelagic systems, specifically in relation to physical parameters, can be important for the management of bentho-pelagic systems undergoing rapid change associated with global climate change and other anthropogenic disturbances such as fishing (i.e., the Antarctic Peninsula and Scotia Sea). We tracked 11 adult male southern elephant seals (Mirounga leonina), during their five-month post-moult foraging migrations from King George Island (Isla 25 de Mayo), northern Antarctic Peninsula, using tags capable of recording and transmitting behavioural data and in situ temperature and salinity data. Seals foraged mostly within the Weddell-Scotia Confluence, while a few foraged along the western Antarctic Peninsula shelf of the Bellingshausen Sea. Mixed model outputs suggest that the at-sea behaviour of seals was associated with a number of environmental parameters, especially seafloor depth, sea-ice concentrations and the temperature structure of the water column. Seals increased dive bottom times and travelled at slower speeds in shallower areas and areas with increased sea-ice concentrations. Changes in dive depth and durations, as well as relative amount of time spent during the bottom phases of dives, were observed in relation to differences in overall temperature gradient, likely as a response to vertical changes in prey distribution associated with temperature stratification in the water column. Our results illustrate the likely complex influences of bathymetry, hydrography and sea ice on the behaviour of male southern elephant seals in a changing environment and highlight the need for region-specific approaches to studying environmental influences on behaviour.
Resumo:
Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll-a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll-a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll-a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll-a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll-a was caused by Saharan dust input and not by coastal upwelling processes. Time lags of <8 days, 8 days, and 16 days were determined. An increase in surface chlorophyll-a concentration of up to 2.4 mg m**3 after dust storms in which the dust component of the aerosol optical depth was up to 0.9 was observed.
Resumo:
Samples of filtered particulate organic matter (POM) were obtained during the summers of 1999 and 2000 from the surface waters of the Nordic seas to monitor the spatial distribution of long-chain alkenones. The aim of the study was to appraise existing alkenone-based climatic proxies in northern high latitudes. Unusually high percentages of the tetraunsaturated alkenone were measured in the polar waters of the East Greenland Current, with C37:4 of up to 77% in 80% of sea-ice cover. Values of percent C37:4 across the Nordic seas showed a strong association with water mass type. Analysis of coccoliths in filters indicated that calcified Emiliania huxleyi could not be discounted as the biological precursor of alkenones in all the water masses. A combined data set of 69 samples of POM revealed a stronger correlation of percent C37:4 to sea surface salinity (SSS; R2 = 0.72) than to sea surface temperature (SST; R2 = 0.50). Values of percent C37:4 in sea surface POM were much higher than those in surficial sediments of the northern North Atlantic. To explain the discrepancy in sedimentary and surface water column percent C37:4, we propose that the alkenone contents in surface sediments underlying arctic and polar waters are a combination of autochthonous and allochthonous inputs of alkenones. Our results show that percent C37:4 can be used to reconstruct the relative extension of arctic/polar water masses in the North Atlantic. However, the results prevent confirmation of percent C37:4 as a paleo-SSS proxy in the Nordic seas, given its multivariate nature in our data set and the decoupling between its range of values in surface waters and sediments.
Resumo:
High sedimentation rates in fjords provide excellent possibilities for high resolution sedimentary and geochemical records over the Holocene. As a baseline for an improved interpretation of geochemical data from fjord sediment cores, this study aims to investigate the inorganic/organic geochemistry of surface sediments and to identify geochemical proxies for terrestrial input and river discharge in the Trondheimsfjord, central Norway. Sixty evenly distributed surface sediment samples were analysed for their elemental composition, total organic carbon (Corg), nitrogen (Norg) and organic carbon stable isotopes (d13Corg), bulk mineral composition and grain size distribution. Our results indicate carbonate marine productivity to be the main CaCO3 source. Also, a strong decreasing gradient of marine-derived organic matter from the entrance towards the fjord inner part is consistent with modern primary production data. We show that the origin of the organic matter as well as the distribution of CaCO3 in Trondheimsfjord sediments can be used as a proxy for the variable inflow of Atlantic water and changes in river runoff. Furthermore, the comparison of grain size independent Al-based trace element ratios with geochemical analysis from terrigenous sediments and bedrocks provides evidence that the distribution of K/Al, Ni/Al and K/Ni in the fjord sediments reflect regional sources of K and Ni in the northern and southern drainage basin of the Trondheimsfjord. Applying these findings to temporally well-constrained sediment records will provide important insights into both the palaeoenvironmental changes of the hinterland and the palaeoceanographic modifications in the Norwegian Sea as response to rapid climate changes and associated feedback mechanisms.