57 resultados para SM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents characteristics of the Nd and Sr isotopic systems of ultrabasic rocks, gabbroids, plagiogranites, and their minerals as well as data on helium and hydrocarbons in fluid inclusions of the same samples. Materials presented in this publication were obtained by studying samples dredged from the MAR crest zone at 5°-6°N (U/Pb zircon dating, geochemical and petrological-mineralogical studies). It was demonstrated that variations in the isotopic composition of He entrapped in rocks and minerals were controlled by variable degrees of mixing of juvenile He, which is typical of basaltic glass for MAR (DM source), and atmospheric He. Increase in the atmospheric He fraction in plutonic rocks and, to a lesser degree, in their minerals reflects involvement of seawater or hydrated material of the oceanic crust in magmatic and postmagmatic processes. This conclusion finds further support in positive correlation between the fraction of mantle He (R ratio) and 87Sr/86Sr ratio. High-temperature hydration of ultrabasic rocks (amphibolization) was associated with increase in the fraction of mantle He, while their low-temperature hydration (serpentinization) was accompanied by drastic decrease in this fraction and significant increase in 87Sr/86Sr ratio. Insignificant variations in 143Nd/144Nd (close to 0.5130) and 87Sr/86Sr (0.7035) in most of gabbroids and plagiogranites as well as the fraction of mantle He in these rocks, amphibolites, and their ore minerals indicate that the melts were derived from the depleted mantle. Similar e-Nd values of gabbroids, plagiogranites, and fresh harzburgites (6.77-8.39) suggest that these rocks were genetically related to a single mantle source. e-Nd value of serpentinized lherzolites (2.62) likely reflects relations of these relatively weakly depleted mantle residues to another source. Aforementioned characteristics of the rocks generally reflect various degrees of mixing of depleted mantle components with crustal components (seawater) during metamorphic and hydrothermal processes that accompanied formation of the oceanic crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal objective of Leg 187 was to locate the Indian/Pacific mantle boundary by sampling and analyzing 8- to 28-Ma seafloor basalts to the north of the Australian Antarctic Discordance (AAD). In this paper we present Sr and Nd isotopic data from basaltic glasses recovered from the 13 sites drilled during Leg 187. Our data show that the boundary region is characterized by a gradual east-west increase in 87Sr/86Sr, with a corresponding decrease in 143Nd/144Nd across a 150-km-wide zone located east and west of the 127°E Fracture Zone. The Sr-Nd isotopic composition of glasses therefore confirms the general conclusions derived by the Leg 187 shipboard scientific party in that the mantle boundary follows a west-pointing, V-shaped depth anomaly that stretches across the ocean floor from the Australian to the Antarctic continental margins. We document that two systematic trends of covariation between 87Sr/86Sr and 143Nd/144Nd can be distinguished, suggesting that the basalts sampled during Leg 187 formed through the interaction of three contrasting source components: (1) a component that lies within the broad spectrum of Indian-type mantle compositions, (2) a boundary component, and (3) a Pacific-type mantle component. The variations in elemental and isotopic compositions indicate that the boundary component represents a distinct mantle region that is associated with the boundary between the Pacific and the Indian mid-ocean-ridge basalt (MORB) sources rather than a dispersed mantle heterogeneity that was preferentially extracted in the boundary region. However, the origin of the boundary component remains an open question. The three components are not randomly intermixed. The Indian and the Pacific mantle sources both interacted with the boundary component, but they seem not to have interacted directly with each other. Large local variability in isotopic compositions of lavas from the mantle boundary region demonstrates that magma extraction processes were unable to homogenize the isotopic contrasts present in the mantle source in this region. Systematic variations in rare earth element (REE) concentrations across the depth anomaly cannot be explained solely by variations in source composition. The observed variations may be explained by an eastward increase and westward decrease in the degree of melting toward the mantle boundary region, compatible with a cooling of the Pacific mantle and a heating of the Indian mantle toward the mantle boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineralogical and H, O, Sr, and Nd isotope compositions have been analyzed on a set of representative samples from the 17-m.y. section in ODP Leg 116 Holes 717C and 718C. Based on the mineralogical composition of the fraction <2 µm together with the lithogenic-biogenic composition of the fraction >63 µm, the whole section can be subdivided into three major periods of sedimentation. Between 17.1 and 6 m.y., and between 0.8 m.y. to present, the sediments are characterized by sandy and silty turbiditic inputs with a high proportion of minerals derived from a gneissic source without alteration. In the fraction <2 µm, illite and chlorite are dominant over smectite and kaolinite. The granulometric fraction >63 µm contains quartz, muscovite, biotite, chlorite, and feldspars. The 6-to 0.8-m.y. period is represented by an alternation of sandy/silty horizons, muds, and calcareous muds rich in smectite, and kaolinite (50% to 85% of the fraction <2 µm) and bioclastic material. The presence of smectite and kaolinite, as well as the 18O/16O and the 87Sr/86Sr ratios of the fraction <2 µm, imply an evolution in a soil environment and exchanges with meteoric ground water. The ranges of isotopic compositions are limited throughout the section: d18O quartz = 11.7 to 13.3 per mil, 87Sr/86Sr = 0.733 to 0.760 and epsilon-Nd (0) = -17.4 to -13.8. These values are within those of the High Himalaya Crystalline series, and they are considered to reflect this source region. The data imply that, since 17 Ma, this formation has supplied the major part of the eroded material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present 40 Sm-Nd isotope measurements of the clay-size (<2 µm) fractions of sediments from the Southern Greenland rise (ODP-646) that span the last 365 kyr. These data track changes in the relative supply of fine particles carried into the deep Labrador Sea by the Western Boundary Under Current (WBUC) back to the fourth glacial-interglacial cycles. Earlier studies revealed three general sources of particles to the core site: (i) Precambrian crustal material from Canada, Greenland, and/or Scandinavia (North American Shield - NAS), (ii) Palaeozoic or younger crustal material from East Greenland, NW Europe, and/or western Scandinavia (Young Crust - YC) and (iii) volcanic material from Iceland and the Mid-Atlantic Ridge (MAR). Clay-size fractions from glacial sediments have the lowest Nd isotopic ratios. Supplies of young crustal particles were similar during glacial oxygen isotope stages (OIS) 2, 6, and 10. In contrast the mean volcanic contributions decreased relative to old craton material from OIS 10 to OIS 6 and then from OIS 6 to OIS 2. The glacial OIS 8 interval displays a mean Sm/Nd ratio similar to those of interglacials OIS 1, 5, and 9. Compared with other interglacials, OIS 7 was marked by a higher YC contribution but a similar ~30% MAR supply. The overall NAS contribution dropped by a factor of 2 during each glacial/interglacial transition, with the MAR contribution broadly replacing it during interglacials. To decipher between higher supplies and/or dilution, particle fluxes from each end member were estimated. Glacial NAS fluxes were systematically higher than interglacial fluxes. During the time interval examined, fine particle supplies to the Labrador Sea were strongly controlled by proximal ice-margin erosion and thus echoed the glacial stage intensity. In contrast, the WBUC-carried MAR supplies from the eastern basins did not change significantly throughout the last 365 kyr, except for a marked increase in surface-sediments that suggests unique modern conditions. Distal WBUC-controlled inputs from the Northern and NE North Atlantic seem to have been less variable than proximal supplies linked with glacial erosion rate.