17 resultados para SILICA COMPOSITE MEMBRANES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments recovered at Ocean Drilling Program Sites 885/886 (central North Pacific Ocean at 44°41'N, 168°14'W and 44°41'N, 168°16'W, respectively) record eolian deposition during the Cenozoic and late Mesozoic. We constructed a record of eolian MAR, which is a proxy for aridity/humidity of the climate in the continental source area. Eolian fluxes are low during the Late Cretaceous through Eocene, reflecting humid conditions in the source area. During the Oligocene, more arid climates prevailed at the source area, as indicated by increased eolian accumulation. The "Diatom Dump", an interval of enhanced silica deposition mainly apparent in the northwest Pacific, is reflected in the record at Sites 885/886 by two- to fivefold higher opal fluxes compared with younger and older sediments. Increased eolian deposition starting at 3.5 Ma and culminating at 2-2.6 Ma are coincident with the onset of Northern Hemisphere glaciation. Sites 885/886 lie 10° north of sites examined previously for the history of eolian deposition in the central North Pacific and therefore allow enhanced understanding of the latitudinal variation of the wind system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Paleocene/Eocene (P/E) boundary, at ~55 Ma, is characterized by a transient warm period lasting 10,000 yr. This interval is globally characterized by significant chemical and biological signals. Ocean Drilling Program Core 199-1221C-11X captured the P/E boundary section at a depth of 154 meters composite depth. Biogenic components of the sediment were measured across this interval in order to better define the events that occurred at the P/E boundary in the equatorial Pacific Ocean. A 26-cm interval low in CaCO3 was identified, whereas biogenic silica and organic carbon remained unchanged. Although CaCO3, biogenic silica, and organic carbon (C-org) production is controlled by different constraints, it is unlikely that an environmental factor would cease production by CaCO3-producing organisms without affecting biogenic silica or C-org production. The data indicate that the CaCO3 P/E boundary event was caused by a change in CaCO3 preservation rather than a change in CaCO3 production.