24 resultados para SHORT-TERM
Resumo:
Hypoxia and ocean acidification are two consequences of anthropogenic activities. These global trends occur on top of natural variability. In environments such as estuarine areas, short-term acute pH and O2 fluctuations are occurring simultaneously. The present study tested the combined effects of short-term seawater acidification and hypoxia on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were exposed for 72 h to six combined treatments with three pH levels (8.1, 7.7 and 7.3) and two dissolved oxygen (DO) levels (2 mg/L, 6 mg/L). Clearance rate (CR), food absorption efficiency (AE), respiration rate (RR), ammonium excretion rate (ER), O:N ratio and scope for growth (SFG) were significantly reduced, and faecal organic dry weight ratio (E) was significantly increased at low DO. Low pH did not lead to a reduced SFG. Interactive effects of pH and DO were observed for CR, E and RR. Principal component analysis (PCA) revealed positive relationships among most physiological indicators, especially between SFG and CR under normal DO conditions. These results demonstrate that Mytilus coruscus was sensitive to short-term (72 h) exposure to decreased O2 especially if combined with decreased pH levels. In conclusion, the short-term oxygen and pH variation significantly induced physiological changes of mussels with some interactive effects.
Resumo:
With the aim of analyzing the complex physical and biogeochemical interactions at high temporal and spatial resolution in the complex estuarine waters of Alfacs Bay, a beam attenuation-based approach was used as optical proxy of different biogeochemical variables. Thus, the dataset contains the attenuation proxies as well as laboratory results from the analysis of water samples, which were used to validate our approach. In addition, the major physical forcing in the Bay was also measured.
Resumo:
Cold-water corals are amongst the most three-dimensionally complex deep-sea habitats known and are associated with high local biodiversity. Despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has already decreased from 8.2 to ~ 8.1. Predicted CO2 emissions will decrease this by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Data here relate to a short term data set (21 days) on metabolism and net calcification rates of freshly collected L. pertusa from Mingulay Reef Complex, Scotland. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.
Resumo:
It has been proposed that increasing levels of pCO2 in the surface ocean will lead to more partitioning of the organic carbon fixed by marine primary production into the dissolved rather than the particulate fraction. This process may result in enhanced accumulation of dissolved organic carbon (DOC) in the surface ocean and/or concurrent accumulation of transparent exopolymer particles (TEPs), with important implications for the functioning of the marine carbon cycle. We investigated this in shipboard bioassay experiments that considered the effect of four different pCO2 scenarios (ambient, 550, 750 and 1000 µatm) on unamended natural phytoplankton communities from a range of locations in the northwest European shelf seas. The environmental settings, in terms of nutrient availability, phytoplankton community structure and growth conditions, varied considerably between locations. We did not observe any strong or consistent effect of pCO2 on DOC production. There was a significant but highly variable effect of pCO2 on the production of TEPs. In three of the five experiments, variation of TEP production between pCO2 treatments was caused by the effect of pCO2 on phytoplankton growth rather than a direct effect on TEP production. In one of the five experiments, there was evidence of enhanced TEP production at high pCO2 (twice as much production over the 96 h incubation period in the 750 ?atm treatment compared with the ambient treatment) independent of indirect effects, as hypothesised by previous studies. Our results suggest that the environmental setting of experiments (community structure, nutrient availability and occurrence of phytoplankton growth) is a key factor determining the TEP response to pCO2 perturbations.
Resumo:
A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August-September 2012. Sediment traps were deployed at 2-5 m and 20-25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.
Resumo:
Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 .
Resumo:
Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure. We then isolated the dominant diatoms in clonal cultures and conditioned them for 1 year under the same temperature and pCO2 conditions from which they were isolated, in order to allow for extended selection or acclimation by these abiotic environmental change factors in the absence of interspecific interactions. These conditioned isolates were then recombined into 'artificial' communities modelled after the original natural assemblage and allowed to compete under conditions identical to those in the short-term natural community experiment. In general, the resulting structure of both the unconditioned natural community and conditioned 'artificial' community experiments was similar, despite differences such as the loss of two species in the latter. pCO2 and temperature had both individual and interactive effects on community structure, but temperature was more influential, as warming significantly reduced species richness. In this case, our short-term manipulative experiment with a mixed natural assemblage spanning weeks served as a reasonable proxy to predict the effects of global change forcing on diatom community structure after the component species were conditioned in isolation over an extended timescale. Future studies will be required to assess whether or not this is also the case for other types of algal communities from other marine regimes.