64 resultados para SEAWEED SARGASSUM
Resumo:
Understanding the ecological implications of global climate change requires investigations of not only the direct effects of environmental change on species performance but also indirect effects that arise from altered species interactions. We performed CO2 perturbation experiments to investigate the effects of ocean acidification on the trophic interaction between the brown seaweed Fucus vesiculosus and the herbivorous isopod Idotea baltica. We predicted faster growth of F. vesiculosus at elevated CO2-concentrations and higher carbon content of the algal tissue. We expected that I. baltica has different consumption rates on algae that have been grown at different CO2 levels and that the isopods remove surplus carbon metabolically by enhanced respiration. Surprisingly, growth of F. vesiculosus as well as the C:N-ratio of the algal tissue were reduced at high CO2-levels. The changes in the elemental composition had no effect on the consumption rates and the respiration of the herbivores. An additional experiment showed that consumption of F. vesiculosus by the isopod Idotea emarginata was independent of ocean acidification and temperature. Our results could not reveal any effects of ocean acidification on the per capita strength of the trophic interaction between F. vesiculosus and its consumers. However, reduced growth of the algae at high CO2-concentrations might reduce the capability of the seaweed to compensate losses due to intense herbivory.
Resumo:
Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are strongly affected by season.
Resumo:
1. Environmental stress can influence species traits and performance considerably. Using a seaweed-snail system from NW (Nova Scotia) and NE (Helgoland) Atlantic rocky shores, we examined how physical stress (wave exposure) modulates traits in the seaweed Fucus vesiculosus and indirectly in its main consumer, the periwinkle Littorina obtusata. 2. In both regions, algal tissue toughness increased with wave exposure. Reciprocal-transplant experiments showed that tissue toughness adjusts plastically to the prevailing level of wave exposure. 3. Choice experiments tested the feeding preference of snails from sheltered, exposed, and very exposed habitats for algae from such wave exposures. Snails from exposed and very exposed habitats consumed algal tissues at similar rates irrespective of the exposure of origin of the algae. However, snails from sheltered habitats consumed less algal tissues from very exposed habitats than tissues from sheltered and exposed habitats. Choice assays using reconstituted algal food (triturated during preparation) identified high thallus toughness as the explanation for the low preference of snails from sheltered habitats for algae from very exposed habitats. 4. Ultrastructural analyses of radulae indicated that rachidian teeth were longest and the number of cusps in lateral teeth (grazing-relevant traits) was highest in snails from very exposed habitats, suggesting that radulae are best suited to rupture tough algal tissues in such snails. 5. No-choice feeding experiments revealed that these radular traits are also phenotypically plastic, as they adjust to the toughness of the algal food. 6. Synthesis. This study indicates that the observed plasticity in the feeding ability of snails is mediated by wave exposure through phenotypic plasticity in the tissue toughness of algae. Thus, plasticity in consumers and their resource species may reduce the potential effects of physical stress on their interaction.
Resumo:
We compared the responses of native and non-native populations of the seaweed Gracilaria vermiculophylla to heat shock in common garden-type experiments. Specimens from six native populations in East Asia and from eight non-native populations in Europe and on the Mexican Pacific coast were acclimated to two sets of identical conditions before their resistance to heat shock was examined. The experiments were carried out twice - one time in the native range in Qingdao, China and one time in the invaded range in Kiel, Germany - to rule out effects of specific local conditions. In both testing sites the non-native populations survived heat shock significantly better than the native populations, The data underlying this statement are presented in https://doi.pangaea.de/10.1594/PANGAEA.859335. After three hours of heat shock G. vermiculophylla exhibited increased levels of heat shock protein 70 (HSP70) and of a specific isoform of haloperoxidase, suggesting that both enzymes could be required for heat shock stress management. However, the elevated resistance toward heat shock of non-native populations only correlated with an increased constitutive expression of heat shock protein 70 (HSP70). The haloperoxidase isoform was more prominent in native populations, suggesting that not only increased HSP70 expression, but also reduced allocation into haloperoxidase expression after heat shock was selected during the invasion history. The data describing expression of HSP70 and three different isoforms of haloperoxidase are presented in https://doi.pangaea.de/10.1594/PANGAEA.859358.
Resumo:
Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur at large scales. Numerous studies have shown the impact of single stressors on individual species. However, studies on the combined effect of multiple stressors on a multi-species assemblage, which is ecologically much more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the two factors warming and acidification in mesocosm experiments and studied their single and combined impact on the brown alga Fucus vesiculosus associated with its natural community (epiphytes and mesograzers) in the Baltic Sea in all seasons (from April 2013 to April 2014). We superimposed our treatment factors onto the natural fluctuations of all environmental variables present in the Benthocosms in so-called delta-treatments. Thereby we compared the physiological responses of F. vesiculosus (growth and metabolites) to the single and combined effects of natural Kiel Fjord temperatures and pCO2 conditions with a 5 °C temperature increase and/or pCO2 increase treatment (1100 ppm in the headspace above the mesocosms). Responses were also related to the factor photoperiod which changes over the course of the year. Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected growth of F. vesiculosus alone and/or interactively with warming. The response direction (additive, synergistic or antagonistic), however, depended on season and daylength. The effects were most obvious when plants were actively growing during spring and early summer. Our study revealed for the first time that it is crucial to always consider the impact of variable environmental conditions throughout all seasons. In summary, our study indicates that in future F. vesiculosus will be more affected by detrimental summer heat-waves than by ocean acidification although the latter consequently enhances growth throughout the year. The mainly negative influence of rising temperatures on the physiology of this keystone macroalga may alter and/or hamper its ecological functions in the shallow coastal ecosystem of the Baltic Sea.
Resumo:
The ingestion of microplastics has been shown for a great variety of marine organisms. However, benthic marine mesoherbivores such as the common periwinkle Littorina littorea have been largely disregarded in studies about the effects of microplastics on the marine biota, probably because the pathway for microplastics to this functional group of organisms was not obvious. In laboratory experiments we showed that the seaweed Fucus vesiculosus retains suspended microplastics on its surface. The numbers of microplastics that adhered to the algae correlated with the concentrations of suspended particles in the water. In choice feeding assays L. littorea did not distinguish between algae with adherent microplastics and clean algae without microplastics, indicating that the snails do not recognize solid nonfood particles in the submillimeter size range as deleterious. In periwinkles that were feeding on contaminated algae, microplastics were found in the stomach and in the gut. However, no microplastics were found in the midgut gland, which is the principle digestive organ of gastropods. Microplastics in the fecal pellets of the periwinkles indicate that the particles do not accumulate rapidly inside the animals but are mostly released with the feces. Our results provide the first evidence that seaweeds may represent an efficient pathway for microplastics from the water to marine benthic herbivores.