28 resultados para SAMPLE PREPARATION METHOD
Resumo:
We have analyzed inorganic and organic carbons and determined the isotopic composition of both sedimentary organic carbon and inorganic carbon in carbonates contained in sediments recovered from Holes 434, 434A, 434B, 435, and 435A in the landward slope of Japan and from Hole 436 in the oceanic slope of the Japan Trench. Both inorganic and organic carbons were assayed at the P. P. Shirshov Institute of Oceanology, in the same sample, using the Knopp technique and measuring evolved CO2 gravimetrically. Each sample was analyzed twice in parallel. Measurements were of a ±0.05 per cent accuracy and a probability level of 0.95. Carbon isotopic analysis was carried out on a MI-1305 mass spectrometer at the I. M. Gubkin Institute of Petrochemical and Gas Industry and the results presented as dC13 values related to the PDB standard. The procedure for preparing samples for organic carbon isotopic analysis involved (1) drying damp sediments at 60°C; (2) treating samples, while heating, with 10 N HCl to remove carbonate carbon; and (3) evaporating surplus HCl at 60°C. The organic substance was turned to CO2 by oxidizing it in an oxygen atmosphere. To prepare samples for inorganic carbon isotopic analysis we decomposed the carbonates with orthophosphoric acid and refined the gas evolved. The dC13 measurements, including a full cycle of sample preparation, were of a ±0.5 per cent accuracy and a probability level of 0.95.
Resumo:
As part of a wider paleoclimate and paleoceanographic study of Holocene-upper Pleistocene laminated sediments from the eastern equatorial Pacific and Peru continental margin, we completed 32 accelerator mass spectrometry (AMS) 14C dates from cores recovered during Ocean Drilling Program (ODP) Leg 201. Sample preparation and measurement were carried out at the ANTARES AMS facility, Australian Nuclear Science and Technology Organisation (ANSTO), in Sydney, Australia (Lawson et al., 2000, doi:10.1016/S0168-583X(00)00276-7; Fink et al., 2004, doi:10.1016/j.nimb.2004.04.025). Although the sediments are predominantly diatomaceous oozes (D'Hondt, Jørgensen, Miller, et al., 2003, doi:10.2973/odp.proc.ir.201.2003), they contain sufficient inorganic (e.g., foraminifer tests and nannofossil plates) and organic (Meister et al., 2005, doi:10.2973/odp.proc.sr.201.105.2005) carbon to allow 14C dating. These dates permitted us to reconstruct a history of sediment accumulation over the past 20 k.y., particularly on the Peru continental margin. In this report we present 14C AMS dates and other pertinent data from cores from Sites 1227, 1228, and 1229 collected during Leg 201 at the Peru continental margin.
Resumo:
We report oxygen and carbon stable isotope analyses of foraminifers, primarily planktonic, sampled at low resolution in the Cretaceous and Paleogene sections from Sites 1257, 1258, and 1260. Data from two samples from Site 1259 are also reported. The very low resolution of the data only allows us to detect climate-driven isotopic events on the timescale of more than 500 k.y. A several million-year-long interval of overall increase in planktonic 18O is seen in the Cenomanian at Site 1260. Before and after this interval, foraminifers from Cenomanian and Turonian black shales have d18O values in the range -4.2 per mil to -5.0 per mil, suggestive of upper ocean temperatures higher than modern tropical values. The d18O values of upper ocean dwelling Paleogene planktonics exhibit a long-term increase from the early Eocene to the middle Eocene. During shipboard and postcruise processing, it proved difficult to extract well-preserved foraminifer tests from black shales by conventional techniques. Here, we report results of a test of procedures for cleaning foraminifers in Cretaceous organic-rich mudstone sediments using various combinations of soaking in bleach, Calgon/hydrogen peroxide, or Cascade, accompanied by drying, repeat soaking, or sonication. A procedure that used 100% bleach, no detergent, and no sonication yielded the largest number of clean, whole individual foraminifers with the shortest preparation time. We found no significant difference in d18O or d13C values among sets of multiple samples of the planktonic foraminifer Whiteinella baltica extracted following each cleaning procedure.
Resumo:
A quick new method is described for the quantification of absolute nannofossil proportions in deep-sea sediments. This method (SMS) is the combination of Spiking a sample with Microbeads and Spraying it on a cover slide. It is suitable for scanning electron microscope (SEM) analyses and for light microscope (LM) analyses. Repeated preparation and counting of the same sample (30 times) revealed a standard deviation of 10.5%. The application of tracer microbeads with different diameters and densities revealed no statistically significant differences between counts. The SMS-method yielded coccolith numbers that are statistically not significantly different from values obtained from the filtration-method. However, coccolith counts obtained by the random settling method are three times higher than the values obtained by the SMS- and the filtration-method.
Resumo:
Glycolipids are prominent constituents in the membranes of cells from all domains of life. For example, diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2Gly-GDGTs) are associated with methanotrophic ANME-1 archaea and heterotrophic benthic archaea, two archaeal groups of global biogeochemical importance. The hydrophobic biphytane moieties of 2Gly-GDGTs from these two uncultivated archaeal groups exhibit distinct carbon isotopic compositions. To explore whether the isotopic compositions of the sugar headgroups provide additional information on the metabolism of their producers, we developed a procedure to analyze the d13C values of glycosidic headgroups. Successful determination was achieved by (1) monitoring the contamination from free sugars during lipid extraction and preparation, (2) optimizing the hydrolytic conditions for glycolipids, and (3) derivatizing the resulting sugars into aldononitrile acetate derivatives, which are stable enough to withstand a subsequent column purification step. First results of d13C values of sugars cleaved from 2Gly-GDGTs in two marine sediment samples, one containing predominantly ANME-1 archaea and the other benthic archaea, were obtained and compared with the d13C values of the corresponding biphytanes. In both samples the dominant sugar headgroups were enriched in 13C relative to the corresponding major biphytane. This 13C enrichment was significantly larger in the putative major glycolipids from ANME-1 archaea (~15 per mil) than in those from benthic archaea (<7 per mil). This method opens a new analytical window for the examination of carbon isotopic relationships between sugars and lipids in uncultivated organisms.