137 resultados para Rowley Rex J
Resumo:
The Izu-Bonin forearc basement volcanic rocks recovered from Holes 792E and 793B show the same phenocrystic assemblage (i.e., plagioclase, two pyroxenes, and Fe-Ti oxides ±olivine), but they differ in the crystallization sequence and their phenocryst chemistry. All the igneous rocks have suffered low-grade hydrothermal alteration caused by interaction with seawater. As a result, only clinopyroxenes, plagioclases, and oxides have preserved their primary igneous compositions. The Neogene olivine-clinopyroxene diabasic intrusion (Unit II) recovered from Hole 793B differs from the basement basaltic andesites because it lacks Cr-spinels and contains abundant titanomagnetites (Usp38.5-46.4) and uncommon FeO-rich (FeO = 29%) spinels. It displays petrological and geochemical similarities to the Izu Arc volcanoes and, thus, can be considered as related to Izu-Bonin Arc magmatic activity. The titanomagnetites (Usp28.5-33) in the calc-alkaline andesitic fragments of the Oligocene volcaniclastic breccia in Hole 793B (Unit VI) represent an early crystallization phase. The Plagioclase phenocrysts enclosed in these rocks show oscillatory zoning and are less Ca-rich (An78.6-67.8) than the plagioclase phenocrysts of the diabase sill and the basement basaltic andesites. Their clinopyroxenes are Fe-rich augites (Fs ? 19.4; FeO = 12%) and thus, differ significantly from the clinopyroxenes of the Hole 793B arc-tholeiitic igneous rocks. The 30-32 Ma porphyritic, two-pyroxene andesites recovered from Hole 792E are very similar to the andesitic clasts of the Neogene breccia recovered in Hole 793B (Unit VI). Both rocks have the same crystallization sequence, and similar chemistry of the Fe-Ti oxides, clinopyroxenes, and plagioclases: that is, Ti-rich (Usp25.5-30.4) magnetites, Fe-rich augites, and intensely oscillatory zoned plagioclases with bytownitic cores (An86-63) and labradorite rims (An73-68). They display a calc-alkaline differentiation trend (Taylor et al., this volume). So, the basement highly porphyritic andesites recovered at Hole 792E, and the Hole 793B andesitic clasts of Unit VI show the same petrological and geochemical characteristics, which are that of calc-alkaline suites. These Oligocene volcanic rocks represent likely the remnants of the Izu-Bonin normal arc magmatic activity, before the forearc rifting and extension. The crystallization sequence in the basaltic andesites recovered from Hole 793B is olivine-orthopyroxene-clinopyroxene-plagioclase-Fe-Ti oxides, indicating a tholeiitic differentiation trend for these volcanic rocks. Type i is an olivine-and Cr-spinel bearing basaltic andesite whereas Type ii is a porphyritic pyroxene-rich basaltic andesite. The porphyritic plagioclase-rich basaltic andesite (Type iii) is similar, in most respects, to Type ii lavas but contains plagioclase phenocrysts. The last, and least common lava is an aphyric to sparsely phyric andesite (Type iv). Cr-spinels, included either in the olivine pseudomorphs of Type i lavas or in the groundmass of Type ii lavas, are Cr-rich and Mg-rich. In contrast, Cr-spinels included in clinopyroxenes and orthopyroxenes (Types i and ii lavas) show lower Cr* and Mg* ratios and higher aluminium contents. Orthopyroxenes from all rock types are Mg-rich enstatites. Clinopyroxenes display endiopsidic to augitic compositions and are TiO2 and Al2O3 depleted. All the crystals exhibit strong zoning patterns, usually normal, although, reverse zoning patterns are not uncommon. The plagioclases show compositions within the range of An90-64. The Fe-Ti oxides of the groundmass are TiO2-poor (Usp16-17). The Hole 793B basaltic andesites show, like the Site 458 bronzites from the Mariana forearc, intermediate features between arc tholeiites and boninites: (1) Cr-spinel in olivine, (2) presence of Mg-rich bronzite, Ca-Mg-rich clinopyroxenes, and Ca-plagioclase phenocrysts, and (3) transitional trace element depletion and epsioln-Nd ratios between arc tholeiites and boninites. Thus, the forearc magmatism of the Izu-Bonin and Mariana arcs, linked to rifting and extension, is represented by a depleted tholeiitic suite that displays boninitic affinities.
Resumo:
Samples from the upper Oligocene and lower Miocene of Holes 515B (Brazil Basin) and 516F (Rio Grande Rise) were examined for fossil marine diatom content. The preservation of the diatoms was poor and the species diversity low in both holes. However, it was possible to zone portions of the intervals studied using the zonation proposed by Gombos and Ciesielski (1983), which is based, as far as possible, on common and robust species. Thus, the interval in Hole 515B represented by Cores 515B-15 and 515B-16 is assigned to the Coscinodiscus rhombicus Zone and the interval represented by Cores 515B-17 through 515B-44 is assigned to the Rocella gelida Zone. The C. rhombicus Zone is early Miocene in age and the R. gelida Zone is late Oligocene to early Miocene in age. In Hole 516F the interval represented by Cores 516F-6 through 516F-10 is assigned to the R. gelida Zone Gate Oligocene to early Miocene), and the interval represented by Cores 516F-11 through 516F-15 is assigned to the Triceratium groningensis Zone (late Oligocene). Two new fossil diatom taxa are defined herein: Coscinodiscus lewisianus Greville f. concavus n. f. and Rocella semigelida n. sp.
Resumo:
Ocean Drilling Program (ODP) Leg 183 Site 1140 provided a lower Oligocene to middle Miocene record of diatom assemblages from the northern Kerguelen Plateau. Samples were examined to improve the resolution of shipboard diatom biostratigraphy. The material is complementary to that recovered during ODP Legs 119 and 120, and the diatom zonation of Harwood and Maruyama could be readily applied. A standard succession of biostratigraphic zones from the middle Miocene and lower Oligocene was delineated, although some zones were unrecognizable because of poor core recovery. The detailed diatom biostratigraphy presented here agrees well with shipboard calcareous nannofossil biostratigraphy. Sediment accumulation rates based on diatom bioevents average 1.26 cm/k.y.
Resumo:
Cretaceous, Tertiary, and Quaternary sediments from Deep Sea Drilling Project Sites 164 and 196 (13°12' N, 161°31' W and 30°07' N, 148°34' E, respectively) were analyzed for major chemical elements and mineralogy. Sediments from these sites contain large proportions of authigenic minerals: mainly palygorskite, clinoptilolite and chert in the Cretaceous, and montmorillonite, phillipsite and chert in the Tertiary. The montmorillonite-phillipsite assemblage is thought to be derived from volcanic ash or glass, and the palygorskite-clinoptilolite assemblage is thought to be derived by reaction of biogenic silica with volcanic ash or glass or with montmorillonite and phillipsite. Both assemblages have generally moderate Ti/Al ratios, ranging from 0.026 to 0.047, so most of the palygorskite, clinoptilolite, montmorillonite and phillipsite could not be derived in situ from alteration of basaltic material. Plagioclase compositions suggest that the volcanic precursors were silicic or intermediate, but it is also possible that the sediments have been extensively fractionated by redistribution from nearby seamounts. Available data on other Late Cretaceous sediments in the Pacific were analyzed. Clinoptilolite and chert are present nearly everywhere where palygorskite is abundant; phillipsite is rare where palygorskite is abundant. It is suggested that increased water temperatures during the Cretaceous increased reaction rates and determined the alteration products.
Resumo:
The atmospheric partial pressure of carbon dioxide (pCO2) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years1. The oceans are a principal sink for anthropogenic CO2 where it is estimated to have caused a 30% increase in the concentration of H+ in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100. Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem4, 5. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO2 vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of pCO2. Sea-grass production was highest in an area at mean pH 7.6 (1,827 µatm pCO2) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of pCO2 and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.
Resumo:
In the collective monograph results of geological and geophysical studies in the Tadjura Rift carried out by conventional outboard instruments and from deep/sea manned submersibles "Pisces" in winter 1983-1984 are reported. Main features of rift tectonics, geology, petrology, and geochemistry of basalts from the rift are under consideration. An emphasis is made on lithology, stratigraphy, and geochemistry of bottom sediments. Roles of terrigenous, edafogenic, biogenic, and hydrothermal components in formation of bottom sediments from the rift zone are shown.
Resumo:
Oxygen and carbon isotope measurements have been made in picked planktonic and benthonic foraminifers from the five sites drilled on Leg 74, covering the whole Cenozoic. For the Neogene, the coverage gives good information on the development of the vertical temperature structure of Atlantic deep water. For the Paleogene, vertical gradients were weak and it is possible to combine data from different sites to obtain a very detailed record of both the temperature and carbon isotope history of Atlantic deep waters.
Resumo:
The Mid-Pleistocene transition (MPT) of the global climate system, initiated by a shift towards much larger northern hemisphere ice shields at around 920 ka and ending with predominance of 100 kyr ice age cyclicity since about 640 ka, is one of the fundamental enigmas in Quaternary climate evolution. Climate proxy records not exclusively linked to global ice volume are necessary to advance understanding of the MPT. Here we present a high-resolution Pleistocene magnetic susceptibility time series of 12 sediment cores from the subtropical South Atlantic essentially reflecting dissolution driven variations in carbonate accumulation controlled by changes in deep water circulation. In addition to characteristics known from delta18O records, the data sets reveal three remarkable features intimately related to the MPT: (1) an all-Pleistocene minimum of carbonate accumulation in the South Atlantic at 920 ka, (2) a MPT interim state of reduced carbonate deposition, indicating that the MPT period may have been a discrete state of the Pleistocene deep water circulation and climate system and (3) a terminal MPT event at around 540-530 ka documented in several peculiarities such as thick laminated layers of the giant diatom Ethmodiscus rex.