44 resultados para Romilly, Jacqueline de


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is a first effort to compile the largest possible body of data available from different plankton databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Data (MAREDAT) project, which aims at building consistent data sets for the main PFTs (Plankton Functional Types) in order to help validate biogeochemical ocean models by using converted C biomass from abundance data. Diatom abundance data were obtained from various research programs with the associated geolocation and date of collection, as well as with a taxonomic information ranging from group down to species. Minimum, maximum and average cell size information were mined from the literature for each taxonomic entry, and all abundance data were subsequently converted to biovolume and C biomass using the same methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first high-resolution (500 m × 500 m) gridded methane (CH4) emission inventory for Switzerland, which integrates the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process- or area-specific emission factors. In Switzerland, the highest CH4 emissions in 2011 originated from the agricultural sector (150 Gg CH4/yr), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH4/yr) mainly from landfills and the energy sector (12 Gg CH4/yr), which was dominated by emissions from natural gas distribution. Compared to the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH4/yr), making up only 3 % of the total emissions in Switzerland. CH4 fluxes from agricultural soils were estimated to be not significantly different from zero (between -1.5 and 0 Gg CH4/yr), while forest soils are a CH4 sink (approx. -2.8 Gg CH4/yr), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and a European CH4 inventory (TNO/MACC). This new spatially-explicit emission inventory for Switzerland will provide valuable input for regional scale atmospheric modeling and inverse source estimation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoplankton community was studied in the Bering Strait and over the shelf, continental slope, and deep-water zones of the Chukchi and Beaufort Seas in the middle of the vegetative season (July-August 2003). Its structure was analyzed in relation to ice conditions and seasonal patterns of water warming, stratification, and nutrient concentrations. Overall variations in phytoplankton abundance from 200 to 6000000 cells/l and biomass from 0.1 to 444.1 µg C/l.were estimated. The bulk of phytoplankton cells concentrated in the seasonal picnocline at depths 10-25 m. The highest values of cell abundance and biomass were recorded in regions influenced by inflow of Bering Sea waters or characterized by intense hydrodynamics, such as the Bering Strait, Barrow Canyon, and the outer shelf and slope of the Chukchi Sea. In the middle of the vegetative season, phytoplankton in the study region of the Western Arctic proved to comprise three successional (seasonal) assemblages: early spring, late spring, and summer assemblages. Their spatial distribution was dependent mainly on local features of hydrological and nutrient regimes rather than on general latitudinal trends of seasonal succession characteristic of arctic ecosystems.