320 resultados para Relationship content and methodology
Resumo:
Nine piston cores and six triggerweight cores retrieved from the eastern equatorial Pacific Ocean during the Venture 1 expedition were analyzed for dry-bulk density (DBD) and CaCO3 content. Sites are located along a north-south transect at 110°W from 11°N to 3°S and along an east-west transect from 110° to 90°W, at approximately 3°S. The data reveal two DBD-CaCO3 relationships and four patterns of CaCO3 abundance.
Resumo:
Temora longicornis, a dominant calanoid copepod species in the North Sea, is characterised by low lipid reserves and high biomass turnover rates. To survive and reproduce successfully, this species needs continuous food supply and thus requires a highly flexible digestive system to exploit various food sources. Information on the capacity of digestive enzymes is scarce and therefore the aim of our study was to investigate the enzymatic capability to respond to quickly changing nutritional conditions. We conducted two feeding experiments with female T. longicornis from the southern North Sea off Helgoland. In the first experiment in 2005, we tested how digestive enzyme activities and enzyme patterns as revealed by substrate SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) responded to changes in food composition. Females were incubated for three days fed ad libitum with either the heterotrophic dinoflagellate Oxyrrhis marina or the diatom Thalassiosira weissflogii. At the beginning and at the end of the experiment, copepods were deep-frozen for analyses. The lipolytic enzyme activity did not change over the course of the experiment but the enzyme patterns did, indicating a distinct diet-induced response. In a second experiment in 2008, we therefore focused on the enzyme patterns, testing how fast changes occur and whether feeding on the same algal species leads to similar patterns. In this experiment, we kept the females for 4 days at surplus food while changing the algal food species daily. At day 1, copepods were offered O. marina. On day 2, females received the cryptophycean Rhodomonas baltica followed by T. weissflogii on day 3. On day 4 copepods were again fed with O. marina. Each day, copepods were frozen for analysis by means of substrate SDS-PAGE. This showed that within 24 h new digestive enzymes appeared on the electrophoresis gels while others disappeared with the introduction of a new food species, and that the patterns were similar on day 1 and 4, when females were fed with O. marina. In addition, we monitored the fatty acid compositions of the copepods, and this indicated that specific algal fatty acids were quickly incorporated. With such short time lags between substrate availability and enzyme response, T. longicornis can successfully exploit short-term food sources and is thus well adapted to changes in food availability, as they often occur in its natural environment due seasonal variations in phyto- and microzooplankton distribution.
Resumo:
Quantifying phosphorus (P) concentrations in marine sediments is necessary for constraining the oceanic record of phosphorus burial and helps to constrain P sedimentary geochemistry. To understand P geochemistry in the sediments, we must determine the geochemical forms of P as well as the transformations occurring between these P components with depth and age. Although several records now exist of P geochemistry in the western and eastern equatorial Pacific (Filippelli and Delaney, 1995, doi:10.2973/odp.proc.sr.138.144.1995; 1996, doi:10.1016/0016-7037(96)00042-7), the western equatorial Atlantic (Delaney and Anderson, 1997, doi:10.2973/odp.proc.sr.154.124.1997), the California Current (Delaney and Anderson, in press), and the Benguela Current (Anderson et al., 2001, doi:10.1029/2000GB001270), most of these are Neogene records. Relatively little data exist from sediments of the Paleogene or Cretaceous, time periods when carbon isotope records indicate major carbon shifts and when the nature of P geochemistry has not been well constrained. Samples from several sites at various water depths, oceanographic regions, and ages are needed to understand how P geochemistry and burial in sediments reflect ocean history. We determined P geochemistry and reactive P concentrations in Atlantic sediments of Eocene to Cretaceous age. These are the first records of P geochemistry with good age control from this period. Blake Nose sites are ideal for investigating P geochemistry, as the sediments are shallowly buried at a range of water depths and sedimentation rates. We determined P concentrations and geochemistry, along with calcium carbonate contents, in mid-Cretaceous to upper Eocene sediments drilled on Blake Nose (Ocean Drilling Program Leg 171B) in a depth transect of four sites (Sites 1052, 1051, 1050, and 1049; water depths: 1345, 1983, 2300, and 2656 m, respectively).
Resumo:
Lipids are used for the evaluation of the different organic matter contributions in the north eastern Norwegian sea (M23258 site; 75ºN, 14ºE) over the last 15,000 years. Development of a mass balance model based on the down core quantification of the C37 alkenones, the odd carbon numbered n-alkanes (Aodd) and the unresolved complex mixture of hydrocarbons (UCM) has allowed three main organic matter inputs involving marine, continental and ancient reworked organic matter to be recognized. The model shows a good agreement between measured and reconstructed TOC values. Similarly, a strong parallelism is observed between predicted components such as marine TOC and carbonate content (CaCO3), which was determined independently. Representation of the model results within a time-scale based on 15 AMS-14C measurements shows that the main changes in organic matter constituents are coincident with the major climatic events of the last 15,000 a. Thus, the predominance of reworked organic matter is characteristic of Termination Ia (up to 70%), continental organic matter was dominant during the Bølling-Allerød (B-A) and Younger Dryas (YD) periods (about 85%) and a strong increase of marine organic matter occurred in the Holocene (between 50 and 75%). This agreement reflects the main hydrographic changes that determined the deposition of sedimentary materials during the period studied: ice-rafted detritus from the Barents continental platform, ice-melting waters from the Arctic fluvial system discharging into the Barents sea and dominance of north Atlantic currents, respectively. In this respect, the high-resolution down core record resulting from the mass balance and lipid measurements allows the identification of millennial-scale events such as the increase of reworked organic matter at the final retreat of the Barents ice sheet at the end of the deglaciation period (Termination Ib).
Resumo:
New results on the petrochemistry and geochemistry of dolerites from the Schirmacher Oasis shed light on the development of the Karoo-Maud plume in Antarctica. The basalts and dolerites are petrologically identical to the rocks of western Dronning Maud Land (DML), which were previously studied and interpreted as a manifestation of the Karoo-Maud plume in Antarctica. The spatial distribution of the dikes suggests eastward spreading of the plume material, up to the Schirmacher Oasis for at least 10 Ma. The geochemical characteristics of magmas from the Schirmacher Oasis reflect the influence of crustal contamination, which accompanied both the ascent and spreading of the plume. The magmas of the initial stage of plume activity (western DML) appeared to be the most contaminated in crustal components. It was found that the geochemical characteristics of Mesozoic magmas from the Schirmacher Oasis are identical to those of enriched tholeiites from the Afanasy Nikitin Rise and the central Kerguelen Plateau (Hole 749), which indicates that their enrichment was related to the ancient material of the Gondwana continent. This was caused by the opening of the Indian Ocean under the influence of the Karoo-Maud plume. This process was peculiar in that it occurred in the presence of nonspreading blocks of varying thickness, for instance, Elan Bank in the central Kerguelen Plateau, and was accompanied by the formation of intraplate volcanic rises, which are documented in the seafloor relief of basins around Antarctica. The geochemical characteristics of igneous rocks from the resulting rises (Afanasy Nikitin, Kerguelen, Naturaliste, and Ninetyeast Ridge) indicate the influence of processes related to crustal assimilation. The magmatism that occurred 40 Ma after the main phase of the Karoo-Maud volcanism at the margins of the adjacent continents of Australia (Bunbury basalts) and India (Rajmahal trapps) could be generated by the Karoo-Maud plume flowing along the developing spreading zone. The plume moved subsequently and was localized at the Kerguelen Plateau, where it occurs at present as an active hotspot.
Resumo:
A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.
Resumo:
Aufbau und Ausdehnung der Schwermineral-Anreicherungen (Ilmenit, Granat, Amphibol) am Strand südlich Skagens wurden in langen Schürfgräben untersucht. Die Seifenlagen ziehen durchgehend vom Kliff-Fuß bis zur mittleren Meereshöhe hin und liegen meist diskordant auf der alten Strandschichtung. Ihre strandparallele Ausdehnung beträgt bis zu 100 m. Aufgebaut werden sie aus dünnen Schwermineral-Lamellen, die in kleinerem Umfang überall in den Strandablagerungen zu finden sind und hier das Gefüge nachzeichnen (Rippeln, Strandwallschichtung, Schichtstörungen). Die Seifenbildung geht in einem Gebiet mit verstärktem Küstenabtrag vor sich (Lee-Erosion südlich der Hafenmolen von Skagen). Dieses deutet darauf hin, daß die Schwerminerale bei Aufarbeitung bereits vorhandener Sedimente infolge ihres unterschiedlichen hydraulischen Verhaltens Zurückbleiben und schließlich angereichert werden. Die Korngrößenverteilung der Minerale in verschiedenen Sedimentproben zeigen, daß mit steigender Schwermineral-Anreicherung eine Kornverfeinerung und Zunahme der spezifisch schwersten Minerale (opake Erzminerale und Zirkon) auftritt. In ähnlicher Weise werden die Sortierungswerte besser. Die Aufbereitung des Sedimentes wird, in Anlehnung an v. ENGELHARDT (1939), mit einem doppelten Sortierungsvorgang durch die Wasserbewegung am Strand erklärt. Beim Absinken des Sandes nach dem Brecherschwall tritt eine Vorsortierung ein, die den Abtransport der leichteren und größeren Minerale im Sog begünstigt. Verbindungen zu Vorstellungen der Aufbereitungstechnik (Rundherdverfahren) und Hydrodynamik ('laminare Unterschicht') werden hergestellt. Die Dünensande Skagens sind infolge ihres hohen Schwermineralgehaltes und günstiger Äquivalentgrößen der einzelnen Minerale besonders bedeutsam für die Seifenbildung am Strand.
Resumo:
At Sites 1130 and 1132 of Ocean Drilling Program Leg 182 in the Great Australian Bight, we recovered an expanded Pleistocene section dominated by packstone and wackestone, deposited at unusually high rates of >20 cm/k.y. Shipboard observations detected an intermittent meter-scale alternation of light gray intervals with olive-gray intervals. Meter-scale samples were collected from the upper 250 m at both sites and decimeter-scale samples from four selected 2.5- to 4.0-m intervals in order to determine the texture and composition of sediments deposited along the upper slope throughout the Quaternary. Detailed textural and compositional data are presented from a total of 540 samples collected from both sites. Results indicate a general coarsening upward at both sites, with an accompanying upcore increase in high-Mg calcite (HMC) and aragonite and a decrease in low-Mg calcite (LMC). Samples collected at decimeter-scale intervals substantiate that the alternating light gray and olive-gray units detected on board ship are lithologically distinct. Light gray units consist of an LMC-rich silt, whereas olive-gray units consist of an aragonite and HMC-rich sand and silt. Sediment sources as well as timing and controls of this cyclic depositional pattern will be the subject of further investigations.
Resumo:
Since the 1970s, Ocean Drilling Program (ODP) and Deep Sea Drilling Program (DSDP) studies have documented high accumulations of biogenic silica and carbonate in the late Miocene-early Pliocene Indian-Pacific Ocean. This high biogenic productivity event, or the "Biogenic Bloom Event," has been dated from 9.0 to 3.5 Ma (Leinen, 1979, doi:10.1130/0016-7606(1979)90<801:BSAITC>2.0.CO;2; Theyer et al., 1985, doi:10.2973/dsdp.proc.85.133.1985; Farrell et al., 1995, doi:10.2973/odp.proc.sr.138.143.1995; Dickens and Owen, 1996, doi:10.1016/0377-8398(95)00054-2, 1999, doi:10.1016/S0025-3227(99)00057-2; Dickens and Barron, 1997, doi:10.1016/S0377-8398(97)00003-0; Berger et al., 1993, doi:10.2973/odp.proc.sr.130.051.1993). It is unknown, however, whether the Biogenic Bloom Event existed in the South China Sea (SCS). High-quality Cenozoic sediment cores taken from the SCS during ODP Leg 184 provide an opportunity to investigate this question. The purpose of this study is to trace and illustrate the change in biogenic productivity in the southern SCS since the late Miocene and the Biogenic Bloom Event in terms of the content and accumulation rate of opal and carbonate at Site 1143.
Resumo:
The amount and the accumulation rate of quartz were measured in 33 samples from Hole 576A. The amount and source of mineral aerosol being deposited in the northwest Pacific during the Cenozoic are evaluated using these data. When Hole 576A is compared to a Cenozoic record in the central North Pacific, a strong uniformity in the composition of the mineral aerosol across the North Pacific is seen. The data suggest that Hole 576A entered the influence of the westerlies about 15 m.y. ago and that since that time the rates of sediment deposition have increased. Only the dramatic change in quartz accumulation 2.5 m.y. ago can be clearly related to a climatic event, but a gradual increase in quartz accumulation through the Miocene and early Pliocene is probably a result of increasing Northern Hemisphere aridity and intensified atmospheric activity associated with global cooling during the interval.
Resumo:
Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water.
Resumo:
The sulfur contents of 21 basalt samples from four DSDP Leg 82 holes were determined and the isotopic compositions of sulfur were measured on 15 of them. Most of the basalts are altered and have sulfur contents of about 100 ppm. Isotopic ratios for sulfate and total sulfur range from +0.7 to +10.5 per mil, indicating almost complete leaching of the igneous sulfide in low-sulfur samples by alteration. Total sulfur content of some samples ranges between 960 and 1170 ppm, somewhat higher than expected for tholeiitic basalts. The isotope ratios of total sulfur in these samples are slightly shifted to values heavier than the generally assumed mantle ratio of zero, and this shift is thought to result from a secondary source of sulfur.