38 resultados para Refine
Resumo:
Five sections drilled in multiple holes over a depth transect of more than 2200 m at the Walvis Ridge (SE Atlantic) during Ocean Drilling Program (ODP) Leg 208 resulted in the first complete early Paleogene deep-sea record. Here we present high-resolution stratigraphic records spanning a ~4.3 million yearlong interval of the late Paleocene to early Eocene. This interval includes the Paleocene-Eocene thermal maximum (PETM) as well as the Eocene thermal maximum (ETM) 2 event. A detailed chronology was developed with nondestructive X-ray fluorescence (XRF) core scanning records and shipboard color data. These records were used to refine the shipboard-derived spliced composite depth for each site and with a record from ODP Site 1051 were then used to establish a continuous time series over this interval. Extensive spectral analysis reveals that the early Paleogene sedimentary cyclicity is dominated by precession modulated by the short (100 kyr) and long (405 kyr) eccentricity cycles. Counting of precession-related cycles at multiple sites results in revised estimates for the duration of magnetochrons C24r and C25n. Direct comparison between the amplitude modulation of the precession component derived from XRF data and recent models of Earth's orbital eccentricity suggests that the onset of the PETM and ETM2 are related to a 100-kyr eccentricity maximum. Both events are approximately a quarter of a period offset from a maximum in the 405-kyr eccentricity cycle, with the major difference that the PETM is lagging and ETM2 is leading a 405-kyr eccentricity maximum. Absolute age estimates for the PETM, ETM2, and the magnetochron boundaries that are consistent with recalibrated radiometric ages and recent models of Earth's orbital eccentricity cannot be precisely determined at present because of too large uncertainties in these methods. Nevertheless, we provide two possible tuning options, which demonstrate the potential for the development of a cyclostratigraphic framework based on the stable 405-kyr eccentricity cycle for the entire Paleogene.
Resumo:
The strontium isotope ratios (87Sr/86Sr) of marine barite microcrystals separated from Cretaceous sedimentary deposits from Ocean Drilling Program and Deep Sea Drilling Project sites from the Pacific and Indian Oceans have been compared to the composite Sr isotope curve of McArthur et al. The barite in these cores accurately recorded the seawater 87Sr/86Sr ratio, thereby reaffirming the composite Cretaceous strontium curve. Moreover, marine barite is a more reliable recorder of 87Sr/86Sr than is carbonate in sedimentary deposits with high clay content, thereby providing an opportunity for Sr isotope stratigraphy and dating in carbonate-poor or diagenetically altered sections. We have used the barite-derived Sr isotope record to refine the biostratigraphic age models of the sites investigated.
Resumo:
Core-top samples from different ocean basins have been analyzed to refine our current understanding of the sensitivity of benthic foraminiferal calcite magnesium/calcium (Mg/Ca) to bottom water temperatures (BWT). Benthic foraminifera collected from Hawaii, Little Bahama Bank, Sea of Okhotsk, Gulf of California, NE Atlantic, Ceara Rise, Sierra Leone Rise, the Ontong Java Plateau, and the Southern Ocean covering a temperature range of 0.8 to 18°C were used to revise the Cibicidoides Mg/Ca-temperature calibration. The Mg/Ca-BWT relationship of three common Cibicidoides species is described by an exponential equation: Mg/Ca = 0.867 ± 0.049 exp (0.109 ± 0.007 * BWT) (stated errors are 95% CI). The temperature sensitivity is very similar to a previously published calibration. However, the revised calibration has a significantly different preexponential constant, resulting in different predicted absolute temperatures. We attribute this difference in the preexponential constant to an analytical issue of accuracy. Some genera, notably Uvigerina, show apparently lower temperature sensitivity than others, suggesting that the use of constant offsets to account for vital effects in Mg/Ca may not be appropriate. Downcore Mg/Ca reproducibility, as determined on replicate foraminiferal samples, is typically better than 0.1 mmol/mol (2 S.E.). Thus, considering the errors associated with the Cibicidoides calibration and the downcore reproducibility, BWT may be estimated to within ±1°C. Application of the revised core-top Mg/Ca-BWT data to Cenozoic foraminiferal Mg/Ca suggests that seawater Mg/Ca was not more than 35% lower than today in the ice-free ocean at 50 Ma.
Resumo:
Stratigraphic information from strontium, oxygen, and carbon isotopic ratios has been integrated with diatom and planktonic foraminifer datums to refine the Oligocene to early Miocene chemostratigraphy of Site 803. The Sr isotope results are based on analyses of mixed species of planktonic foraminifer and bulk carbonate samples. 87Sr/86Sr ratios of bulk carbonate samples are, in most cases, less radiogenic than contemporaneous seawater. Estimated sediment ages based on planktonic foraminifer 87Sr/86Sr ratios, using the Sr-isotope-age relation determined by Hess and others in 1989, are in moderately good agreement with the biostratigraphic ages. Chronological resolution is significantly enhanced with the correlation of oxygen and carbon isotope records to those of the standard Oligocene section tied to the Geomagnetic Polarity Time Scale at Site 522. Ages revised by this method and other published ages of planktonic foraminifer datums are used to revise the Oligocene stratigraphy of Site 77 to correlate the stable isotope records of Sites 77 and 803. Comparison of the Cibicidoides stable isotope records of Sites 77 and 574 with paleodepths below 2500 m in the central equatorial Pacific, and Site 803 at about 2000-m paleodepth in the Ontong Java Plateau reveals inversions in the vertical d18O gradient at several times during the Oligocene and in the early Miocene. The shallower water site had significantly-higher d18O values than the deeper water sites after the earliest Oligocene 18O enrichment and before 34.5 Ma, in the late Oligocene from 27.5 to at least 25 Ma, and in the early Miocene from 22.5 to 20.5 Ma. It is not possible to ascertain if the d18O inversion persisted during the Oligocene/Miocene transition because the deeper sites have hiatuses spanning this interval. We interpret this pattern to reflect that waters at about 2000 m depth were cold and may have formed from mixing with colder waters originating in northern or southern high-latitude regions. The deeper water appear to have been warmer and may have been a mixture with warm saline waters from mid- or low-latitude regions. No apparent vertical d13C gradient is present during the Oligocene, suggesting that the age difference of these water masses was small.
Resumo:
The long-term rate of racemization for amino acids preserved in planktonic foraminifera was determined by using independently dated sediment cores from the Arctic Ocean. The racemization rates for aspartic acid (Asp) and glutamic acid (Glu) in the common taxon, Neogloboquadrina pachyderma, were calibrated for the last 150 ka using 14C ages and the emerging Quaternary chronostratigraphy of Arctic Ocean sediments. An analysis of errors indicates realistic age uncertainties of about ±12% for Asp and ±17% for Glu. Fifty individual tests are sufficient to analyze multiple subsamples, identify outliers, and derive robust sample mean values. The new age equation can be applied to verify and refine age models for sediment cores elsewhere in the Arctic Ocean, a critical region for understanding the dynamics of global climate change.
Resumo:
Despite the different scientific objectives of Legs 185 and 191, the sedimentary sections recovered from Sites 1149 and 1179 are the two most complete sections recovered from the northwestern Pacific Basin by either the Deep Sea Drilling Project (DSDP) (i.e., Legs 6, 20, 32, and 86) or ODP (i.e., Legs 185 and 191). During Leg 185, a complete sedimentary section (410 m) and an additional 133 m of highly altered volcanic basement were recovered. The Miocene to Pleistocene section (i.e., upper ~150 m) recovered from Site 1149 includes lithostratigraphic Unit I (0-118.2 meters below sea floor [mbsf]) and Subunit IIA (118.2-149.5 mbsf) of Plank, Ludden, Escutia, et al. (2000, doi:10.2973/odp.proc.ir.185.2000) and consists of ash- and biogenic silica- bearing clay, radiolarian-bearing clay, silt-bearing clay, ash-bearing siliceous ooze, and diatomaceous clay, with numerous discrete volcanic ash layers (Plank, Ludden, Escutia, et al., 2000, doi:10.2973/odp.proc.ir.185.2000). During Leg 191, a near-continuous 375-m-thick sedimentary section was recovered in addition to 100 m of basaltic basement. The upper 221.5 m of the sedimentary section at Site 1179 (i.e., within lithostratigraphic Unit I of Kanazawa, Sager, Escutia et al. [2001, doi:10.2973/odp.proc.ir.191.2001]) consists of upper Miocene to Pleistocene clay- and radiolarian-bearing diatom ooze containing numerous discrete ash layers. The presence of discrete ash layers within the Miocene to Pleistocene sedimentary section at both Site 1149 and 1179 provides a unique opportunity to conduct 40Ar/39Ar ash chronology to refine the excellent magnetostratigraphic records (based on the scale of Berggren et al., 1995) obtained shipboard from both sites (Plank, Ludden, Escutia, et al., 2000, doi:10.2973/odp.proc.ir.185.2000; Kanazawa, Sager, Escutia, et al., 2001, doi:10.2973/odp.proc.ir.191.2001).In this data report we present the analytical results from the 40Ar/39Ar incrementally heated analyses and provide a new combined late Miocene to Pleistocene 40Ar/39Ar and magnetostratigraphic chronology for the northwestern Pacific.
Resumo:
Leg 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Sites 994, 995, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m**3 of gas.
Resumo:
During Leg 194, a series of eight sites was drilled through Oligocene-Holocene mixed carbonate and siliciclastic sediments on the Marion Plateau, northeast Australia. The major objective was to constrain the magnitude and timing of sea level changes in the Miocene. Site 1193, located on the Marion Plateau in 348 m of water ~80 km from the south central Great Barrier Reef margin, is probably the most important site for constraining the major middle to late Miocene sea level drop and reconstructing the evolution history of the Marion Plateau during the Miocene (Isern, Anselmetti, Blum, et al., 2002, doi:10.2973/odp.proc.ir.194.2002). However, there is no biostratigraphic or other chronological data for the critical interval between 36 and 211 meters below seafloor (mbsf) (virtually the entire late and middle Miocene) due to poor core recovery and a virtual absence of planktonic microfossils in the core catcher samples examined aboard the ship (Isern, Anselmetti, Blum, et al., 2002, doi:10.2973/odp.proc.ir.194.2002). The main purpose of this report is to refine the shipboard nannofossil biostratigraphy through examination of new samples and more detailed examination of those samples reported on board the ship. This results in a refinement for most of the nannofossil datums and provides some useful age information to fill the critical data gap for the middle Miocene. Previous Neogene nannofossil biostratigraphic studies of the Marion Plateau and Queensland Plateau include Gartner et al. (1993, doi:10.2973/odp.proc.sr.133.213.1993) and Wei and Gartner (1993, doi:10.2973/odp.proc.sr.133.216.1993).
Resumo:
The stratotype section for the base of the Miocene is at a reversed (below) to normal (above) magnetic transition that is claimed to represent magnetic chron C6Cn.2n (o). Deep Sea Drilling Project (DSDP) Site 522 is the only location we are aware of that unambiguously records the three normal events of C6Cn. We have quantitatively determined the range of the short-lived nannofossil Sphenolithus delphix and the lower limit of S. disbelemnos in DSDP Holes 522 and 522A in order to calibrate their precise relationship to the magnetostratigraphy and to confirm the completeness of the record at this site. Astronomical tuning of Ocean Drilling Program (ODP) Sites 926, 928, and 929 shows that S. disbelemnos appears at 22.67 Ma and that the entire range of S. delphix is from about 22.98 Ma to 23.24 Ma. Using these ages, linear interpolation in DSDP Site 522 suggests that the age of C6Cn.2n (o) and of the Oligocene-Miocene boundary is 22.92+/-0.04 Ma. Our value, conservatively expressed as 22.9+/-0.1 Ma, is 0.9 m.y. younger than the currently accepted age of the Oligocene-Miocene boundary and of C6Cn.2n (o), which was assigned an age of 23.8 Ma, based on an estimate of 23.8+/-1 Ma for the Oligocene-Miocene boundary. The bulk-sediment carbon isotope data from DSDP Site 522 is correlated to the record from benthic foraminifera at ODP Site 929 to refine the calibration of magnetic reversals from C6Cn.1n (o) to C7n.2n (o) at DSDP Site 522 on the astronomical time scale.
Resumo:
We conducted an integrated paleomagnetic and rock magnetic study on cores recovered from Ocean Drilling Program Sites 1276 and 1277 of the Newfoundland Basin. Stable components of magnetization are determined from Cretaceous-aged sedimentary and basement cores after detailed thermal and alternating-field demagnetization. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier. In view of the normal polarity of magnetization and radiometric dates for the sills at Site 1276 (~98 and ~105 Ma, both within the Cretaceous Normal Superchron) and for a gabbro intrusion in peridotite at Site 1277 (~126 Ma, Chron M1), our results suggest that the primary magnetization of the Cretaceous rocks is likely retained in these rocks. The overall magnetic inclination of lithologic Unit 2 in Hole 1277A between 143 and 180 meters below seafloor is 38°, implying significant (~35° counterclockwise, viewed to the north) rotation of the basement around a horizontal axis parallel to the rift axis (010°). The paleomagnetic rotational estimates should help refine models for the tectonic evolution of the basement. The mean inclinations for Sites 1276 and 1277 rocks imply paleolatitudes of 30.3° ± 5.1° and 22.9° ± 12.0°, respectively, with the latter presumably influenced by tectonic rotation. These values are consistent with those inferred from the mid-Cretaceous reference poles for North America, suggesting that the inclination determinations are reliable and consistent with a drill site on a location in the North America plate since at least the mid-Cretaceous. The combined paleolatitude results from Leg 210 sites indicate that the Newfoundland Basin was some 1800 km south of its current position in the mid-Cretaceous. Assuming a constant rate of motion, the paleolatitude data would suggest a rate of 12.1 mm/yr for the interval from ~130 Ma (Site 1276 age) to present, and 19.6 mm/yr for the interval from 126 Ma (Site 1277 age) to recent. The paleolatitude and rotational data from this study are consistent with the possibility that Site 1276 may have passed over the Canary and Madeira hotspots that formed the Newfoundland Seamounts in the mid-Cretaceous.
Resumo:
Analyses of the palynofacies and sporomorph thermal alteration indices (TAI) of sediments from Ocean Drilling Program (ODP) Sites 959 to 962 in the Cote d'Ivoire-Ghana Transform Margin, West Africa were undertaken to (1) determine the source and depositional conditions of the organic matter in the sediments, (2) refine a paleobathymetric curve derived from other data for Site 959, which drilled the most continuous sedimentary sequence from Pleistocene to Albian and (3) interpret the paleothermal history of the area. Twelve types of dispersed organic matter were identified: amorphous organic matter (AOM), marine palynomorphs, algae, resins, black debris, yellow-brown fragments, black-brown fragments, cuticles, plant tissue, wood, sporomorphs and fungi, The relative abundances of these organic matter components at each site were analyzed using cluster analysis, resulting in the identification of seven palynofacies assemblages at Site 959, five each at sites 960 and 961, and four at Site 962. Amorphous organic matter (which is chiefly marine derived), black debris and wood have played the most significant role in defining palynofacies assemblages. The palynofacies assemblages show some correlation with lithologic units, sediment sources and depositional environments. Previous palynofacies studies in passive margins have demonstrated that changes in the ratio of AOM to terrestrial organic matter are related primarily to proximal-distal positions of depositional environments relative to the shoreline. However, this assumption does not always hold true for a transform margin where tectonic factors play an important role in the organic matter distribution, at least in the early stages of evolution. Lithofacies, CCD paleodepths for the North Atlantic, trace fossil association, benthic foraminifera and palynofacies data were the criteria used for reconstructing a paleobathymetric curve for Site 959. A cyclicity in the organic matter distribution of the Upper Miocene to Lower Pliocene pelagic sediments could be related to fluctuations in productivity of biosiliceous and calcareous organisms, and sedimentation rates. A drastic increase in the amount of AOM and a decrease in black debris and wood in the carbonate and clastic rocks (Lithologic Unit IV) overlying the tectonized Albian sediments (Lithologic Unit V) at Sites 959 and 960 coincide with the presence of an unconformity. Qualitative color analysis of palynomorphs was undertaken for all sites, although the main focus was on Site 959 where detailed organic geochemical data were available. At Site 959, TAI values indicate an immature stage of organic maturation (<2) down to the black claystones of Lithologic Unit III at about 918.47 mbsf. Below this, samples show an increase with depth to a moderately mature stage (>2 except for the claystone samples between 1012.52 and 1036.5 mbsf, and one limestone sample at 1043.4 mbsf), reaching peak levels of 2.58 to 3.0 in the tectonized Albian sediments below the unconformity. These TAI values show a positive correlation with the Tma x values derived from Rock-Eval pyrolysis data. The highest values recorded in the basal tectonized units at all the sites (Sites 960-962 have mean values between 2.25 and 3.13) may be related to high heat flow during the intracontinental to syntransform basin stage in the region.
Resumo:
Vast portions of Arctic and sub-Arctic Siberia, Alaska and the Yukon Territory are covered by ice-rich silty to sandy deposits that are containing large ice wedges, resulting from syngenetic sedimentation and freezing. Accompanied by wedge-ice growth in polygonal landscapes, the sedimentation process was driven by cold continental climatic and environmental conditions in unglaciated regions during the late Pleistocene, inducing the accumulation of the unique Yedoma deposits up to >50 meters thick. Because of fast incorporation of organic material into syngenetic permafrost during its formation, Yedoma deposits include well-preserved organic matter. Ice-rich deposits like Yedoma are especially prone to degradation triggered by climate changes or human activity. When Yedoma deposits degrade, large amounts of sequestered organic carbon as well as other nutrients are released and become part of active biogeochemical cycling. This could be of global significance for future climate warming as increased permafrost thaw is likely to lead to a positive feedback through enhanced greenhouse gas fluxes. Therefore, a detailed assessment of the current Yedoma deposit coverage and its volume is of importance to estimate its potential response to future climate changes. We synthesized the map of the coverage and thickness estimation, which will provide critical data needed for further research. In particular, this preliminary Yedoma map is a great step forward to understand the spatial heterogeneity of Yedoma deposits and its regional coverage. There will be further applications in the context of reconstructing paleo-environmental dynamics and past ecosystems like the mammoth-steppe-tundra, or ground ice distribution including future thermokarst vulnerability. Moreover, the map will be a crucial improvement of the data basis needed to refine the present-day Yedoma permafrost organic carbon inventory, which is assumed to be between 83±12 (Strauss et al., 2013, doi:10.1002/2013GL058088) and 129±30 (Walter Anthony et al., 2014, doi:10.1038/nature13560) gigatonnes (Gt) of organic carbon in perennially-frozen archives. Hence, here we synthesize data on the circum-Arctic and sub-Arctic distribution and thickness of Yedoma for compiling a preliminary circum-polar Yedoma map. For compiling this map, we used (1) maps of the previous Yedoma coverage estimates, (2) included the digitized areas from Grosse et al. (2013) as well as extracted areas of potential Yedoma distribution from additional surface geological and Quaternary geological maps (1.: 1:500,000: Q-51-V,G; P-51-A,B; P-52-A,B; Q-52-V,G; P-52-V,G; Q-51-A,B; R-51-V,G; R-52-V,G; R-52-A,B; 2.: 1:1,000,000: P-50-51; P-52-53; P-58-59; Q-42-43; Q-44-45; Q-50-51; Q-52-53; Q-54-55; Q-56-57; Q-58-59; Q-60-1; R-(40)-42; R-43-(45); R-(45)-47; R-48-(50); R-51; R-53-(55); R-(55)-57; R-58-(60); S-44-46; S-47-49; S-50-52; S-53-55; 3.: 1:2,500,000: Quaternary map of the territory of Russian Federation, 4.: Alaska Permafrost Map). The digitalization was done using GIS techniques (ArcGIS) and vectorization of raster Images (Adobe Photoshop and Illustrator). Data on Yedoma thickness are obtained from boreholes and exposures reported in the scientific literature. The map and database are still preliminary and will have to undergo a technical and scientific vetting and review process. In their current form, we included a range of attributes for Yedoma area polygons based on lithological and stratigraphical information from the original source maps as well as a confidence level for our classification of an area as Yedoma (3 stages: confirmed, likely, or uncertain). In its current version, our database includes more than 365 boreholes and exposures and more than 2000 digitized Yedoma areas. We expect that the database will continue to grow. In this preliminary stage, we estimate the Northern Hemisphere Yedoma deposit area to cover approximately 625,000 km². We estimate that 53% of the total Yedoma area today is located in the tundra zone, 47% in the taiga zone. Separated from west to east, 29% of the Yedoma area is found in North America and 71 % in North Asia. The latter include 9% in West Siberia, 11% in Central Siberia, 44% in East Siberia and 7% in Far East Russia. Adding the recent maximum Yedoma region (including all Yedoma uplands, thermokarst lakes and basins, and river valleys) of 1.4 million km² (Strauss et al., 2013, doi:10.1002/2013GL058088) and postulating that Yedoma occupied up to 80% of the adjacent formerly exposed and now flooded Beringia shelves (1.9 million km², down to 125 m below modern sea level, between 105°E - 128°W and >68°N), we assume that the Last Glacial Maximum Yedoma region likely covered more than 3 million km² of Beringia. Acknowledgements: This project is part of the Action Group "The Yedoma Region: A Synthesis of Circum-Arctic Distribution and Thickness" (funded by the International Permafrost Association (IPA) to J. Strauss) and is embedded into the Permafrost Carbon Network (working group Yedoma Carbon Stocks). We acknowledge the support by the European Research Council (Starting Grant #338335), the German Federal Ministry of Education and Research (Grant 01DM12011 and "CarboPerm" (03G0836A)), the Initiative and Networking Fund of the Helmholtz Association (#ERC-0013) and the German Federal Environment Agency (UBA, project UFOPLAN FKZ 3712 41 106).
Resumo:
We present a high-resolution marine record of sediment input from the Guayas River, Ecuador, that reflects changes in precipitation along western equatorial South America during the last 18ka. We use log (Ti/Ca) derived from X-ray Fluorescence (XRF) to document terrigenous input from riverine runoff that integrates rainfall from the Guayas River catchment. We find that rainfall-induced riverine runoff has increased during the Holocene and decreased during the last deglaciation. Superimposed on those long-term trends, we find that rainfall was probably slightly increased during the Younger Dryas, while the Heinrich event 1 was marked by an extreme load of terrigenous input, probably reflecting one of the wettest period over the time interval studied. When we compare our results to other Deglacial to Holocene rainfall records located across the tropical South American continent, different modes of variability become apparent. The records of rainfall variability imply that changes in the hydrological cycle at orbital and sub-orbital timescales were different from western to eastern South America. Orbital forcing caused an antiphase behavior in rainfall trends between eastern and western equatorial South America. In contrast, millennial-scale rainfall changes, remotely connected to the North Atlantic climate variability, led to homogenously wetter conditions over eastern and western equatorial South America during North Atlantic cold spells. These results may provide helpful diagnostics for testing the regional rainfall sensitivity in climate models and help to refine rainfall projections in South America for the next century.
Resumo:
The increasing pCO2 in seawater is a serious threat for marine calcifiers and alters the biogeochemistry of the ocean. Therefore, the reconstruction of past-seawater properties and their impact on marine ecosystems is an important way to investigate the underlying mechanisms and to better constrain the effects of possible changes in the future ocean. Cold-water coral (CWC) ecosystems are biodiversity hotspots. Living close to aragonite undersaturation, these corals serve as living laboratories as well as archives to reconstruct the boundary conditions of their calcification under the carbonate system of the ocean. We investigated the reef-building CWC Lophelia pertusa as a recorder of intermediate ocean seawater pH. This species-specific field calibration is based on a unique sample set of live in situ collected L. pertusa and corresponding seawater samples. These data demonstrate that uranium speciation and skeletal incorporation for azooxanthellate scleractinian CWCs is pH dependent and can be reconstructed with an uncertainty of ±0.15. Our Lophelia U / Ca-pH calibration appears to be controlled by the high pH values and thus highlighting the need for future coral and seawater sampling to refine this relationship. However, this study recommends L. pertusa as a new archive for the reconstruction of intermediate water mass pH and hence may help to constrain tipping points for ecosystem dynamics and evolutionary characteristics in a changing ocean.
Resumo:
A reexamination of the agglutinated benthic foraminiferal microfaunas found in the Upper Cretaceous red and brown clays of DSDP Hole 603B and ODP Holes 640A and 641A allows us to refine the initial shipboard biostratigraphic interpretation and to propose a fourfold zonation that can be used with some precautions in the oceanic realm. By means of various calibrations, an attempt is also made to integrate this zonation in a worldwide chronostratigraphic framework. The resulting chronologic control permits us to discern large differences in the rhythm of red clay deposition on either side of the North Atlantic Ocean.