22 resultados para Recursive Partitioning and Regression Trees (RPART)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous pollen analytical studies on sediments from the pleistocene lake basin at Samerberg, situated on the northern edge of the Bavarian Alps (47°45' N, 12°12' E, 607 m a.s.l.) had been performed on samples taken from cores and exposures close to the southern shore of the former lake. After geoelectric and refraction-seismic measurements had shown that the lake basin had been much deeper in its northern part, another core was taken where maximum depth could be expected. The corer penetrated three moraines, two of them lying above pollen-bearing sediments, and one below them, and reached the hard rock (Kössener Kalk) at a depth of 93 m. Two forest phases could be identified by pollen analysis. The pollen record begins abruptly in a forest phase at the end of a spruce-dominated period when fir started to spread (DA 1, DA = pollen zone). Following this, Abies (fir) was the main tree species at Samerberg, Picea being second, and deciduous trees were almost non-existent. First box (Buxus) was of major importance in the fir forests (DA 2), but later on beech (Fagus) and wing-nut (Pterocarya) spread (DA 3). Finally this forest gave way to a spruce forest with pine (DA 4). The beginning and the end of this interglacial cycle are not recorded. Its vegetational development is different from the eemian one known from earlier studies at Samerberg. It is characterized by the occurrence of Abies together with Buxus, Pterocarya and Fagus. A similar association of woody species is known only from the Holsteinian age deposits in an area ranging from England to Poland, though at no other place these species were such important constituents of the vegetation as at Samerberg. Therefore zone 1 to 4 are attributed to the Holsteinian interglacial period. The younger forest phase, separated from the interglacial by a stadial with open vegetation (DA 5), seems to be completely represented, though its sediments are disturbed, apparently by sliding which caused repetition of same-age-sediments in the core (DA 7a, b, c) The vegetational development is simple. A juniper phase (DA 6) was followed by reforestation with spruce, accompanied by some fir (DA 7, 9). Finally pine became the dominant species (DA 9). The simple vegetational development of this younger forest phase does not allow a safe correlation with one of the known pre-eemian interstadials, but for stratigraphical reasons it can be related best to the Dömnitz-interglacial, which among others is also known as Wacken- or Holstein-II-interglacial. Possibly another phase of reforestation is indicated at the end of the following stadial (DA 10). But due to an erosional unconformity nothing than the rise of the juniper curve can be stated. It was only after this sequence of forest phases and periods with open vegetation that glaciers reached the Samerberg area again.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP) and particulate (POC, PON, POP) organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and partitioning of organic matter between the particulate and the dissolved phase are controlled by the N:P ratio of upwelled nutrients, implying substantial consequences for nutrient cycling and organic matter pools in the course of decreasing nutrient N:P stoichiometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interglacial lacustrine sediments of 0.3-0.6 m thickness are found in the basin of Wurzach over a distance of about 9 km as detected by 5 borings. The interglacial bed is intercalated between lacustrine sediments of Würm (above) and glaciolacustrine sediments of the Younger Riss (below). Most of the Würmian sediments are silty-sandy, calcareous and varved deposits. They were deposited as bottom sediments of a delta, which had formed in the glacial lake filling the Wurzach basin during the Upper Würm. The terminal moraine of the Younger Riss is found in the N and S of the Reed of Wurzach. In the NE it is overlain by sediments of Würm and Holocene age. The pollen bearing part of the new profile represents the last interglacial period (except its earliest phases), the two Lower Würm interstadials, which are equivalents of the Brørup and Odderade interstadial phases, and a third interstadial, the Dürnten, known from other localities in the forelands of the Alps with a forest vegetation, which consisted mainly of spruce and larch trees, and the intercalated stadial phases. These interstadials are different from those described earlier by FILZER, which on the contrary represent cold periods with highly increased reworking of pollen. The equivalents of the Brørup, Odderade and Dürnten interstadials are the "Kiefer-Fichten-Kampfzeit" and part of the "Kiefernzeit mit Fichte" of FILZER. The characteristic series of climatic events known already from a great number of sites scattered all over Europe and again at Wurzach proves that the Riss/Würm- and the Eem interglacial periods are time-equivalents. Differing amounts of Carpinus and Abies at different places in the northern foreland of the Alps are related to the migration history of the two species during the last interglacial period and must not be used to distinguish different types of interglacials (type Zeifen, type Pfefferbichl).