939 resultados para Rawson-MacMillan Sub-Arctic Expedition
Resumo:
During the "RV Polarstem"-Expedition ARK VIII/2 sediment samples were obtained at the continental slope of NW-Spitsbergen. Detailed sedimentological and geochemical analysis were carried out at two undisturbed box cores (PS2122-1GKG, PS2123-2GKG) as well as two gravity cores (PS2122-1SL, PS2123-2SL). The following parameters were deterrnined: Organic carbon, nitrogen and carbonate contents, hydrogen index, stable isotopes, ice rafted debris, grain-size distribution and biogenic opal. The main objective of this study was the reconstruction of paleoenvironmental changes off the northwest coast of Spitsbergen during the last glacial/interglacial-cycle, i.e., during the last about 128.000 years. The results of the investigations can be summarized as follows: - During isotope stage 1 (Holocene) and 5.5 (Eemian Interglacial), light stable isotopes (d180: 3.4-2 %o; d13C: 0.26-0.5 %o), increased bioturbation, high content of planktonic foraminifera and biogenic opal and low quantity of ice-rafted material, indicate seasonally ice-free conditions along the northwest coast due to the intfluence of the Westspitsbergen Current. - Additionally, the sediment characteristics of the middle of isotope stage 2 (Last Glacial Maximum) and at the end of stage 3 confirms an inflow of warmer Atlantic water. The highest production of planktonic and benthic foraminifera (N. pachyderma sin., Cassidulina teretis) (CaC03: 10 %) may reflect the expansion of the 'Whalers Bay'-Polynya as a result of the influence of the Westspitsbergen Current. Presumably, occasionally open-ice conditions provide sufficient precipitation to buildup the Svalbard/Barents Ice Sheet. - The time intervals for the glacier advances on Svalbard given by Mangerud et al. (1992), can be correlated with increased accumulation of ice-rafted material in the sediments at the northwest coast of Spitsbergen. Especially during isotope stage 4 and at the beginning of the Last Glacial Maximum (isotope stage 2), a drastically increased supply of coarse terrigenous material occurs. The high accumulation rate (0.18-0.21 g/cm**2/ka) of terrigenous organic carbon is indicated by high C/N ratios (until 16) and low hydrogen index (50 mg HC/gC). In constrast to deep sea sediments in the Fram-Strait (Hebbeln 1992), the glacier advance between 118.000 and 108.000 years B.P. ist documented in the continental slope sediments. - At the end of the Weichselian ice age, the deglaciation at the northwest coast starts with a typical melt-water signal in the stables isotope record (d18O: 3.5 %o; d13C: -0.16 %o) and high contents of gravel (6-13 %). The signal can be assigned to an event at the westcoast of Spitsbergen (core NP90-39), dated to 14.500 years B.P. (Andersen et al. 1993).
Resumo:
We evaluated the role of microzooplankton (sensu latto, grazers <500 µm) in determining the fate of phytoplankton production (PP) along a glacier-to-open sea transect in the Greenland subarctic fjord, Godthabfjord. Based on the distribution of size fractionated chlorophyll a (chl a) concentrations we established 4 zones: (1) Fyllas Bank, characterized by deep chl a maxima (ca. 30 to 40 m) consisting of large cells, (2) the mouth and main branch of the fjord, where phytoplankton was relatively homogeneously distributed in the upper 30 m layer, (3) inner waters influenced by glacial melt water and upwelling, with high chl a concentrations (up to 12 µg/l) in the >10 µm fraction within a narrow (2 m) subsurface layer, and (4) the Kapisigdlit branch of the fjord, ice-free, and characterized with a thick and deep chl a maximum layer. Overall, microzooplankton grazing impact on primary production was variable and seldom significant in the Fyllas Bank and mouth of the fjord, quite intensive (up to >100% potential PP consumed daily) in the middle part of the main and Kapisigdlit branches of the fjord, and rather low and unable to control the fast growing phytoplankton population inhabiting the nutrient rich waters in the upwelling area in the vicinity of the glacier. Most of the grazing impact was on the <10 µm phytoplankton fraction, and the major grazers of the system seem to be >20 µm microzooplankton, as deducted from additional dilution experiments removing this size fraction. Overall, little or no export of phytoplankton out of the fjord to the Fyllas Bank can be determined from our data.
Resumo:
Extreme winter warming events in the sub-Arctic have caused considerable vegetation damage due to rapid changes in temperature and loss of snow cover. The frequency of extreme weather is expected to increase due to climate change thereby increasing the potential for recurring vegetation damage in Arctic regions. Here we present data on vegetation recovery from one such natural event and multiple experimental simulations in the sub-Arctic using remote sensing, handheld passive proximal sensors and ground surveys. Normalized difference vegetation index (NDVI) recovered fast (2 years), from the 26% decline following one natural extreme winter warming event. Recovery was associated with declines in dead Empetrum nigrum (dominant dwarf shrub) from ground surveys. However, E. nigrum healthy leaf NDVI was also reduced (16%) following this winter warming event in experimental plots (both control and treatments), suggesting that non-obvious plant damage (i.e., physiological stress) had occurred in addition to the dead E. nigrum shoots that was considered responsible for the regional 26% NDVI decline. Plot and leaf level NDVI provided useful additional information that could not be obtained from vegetation surveys and regional remote sensing (MODIS) alone. The major damage of an extreme winter warming event appears to be relatively transitory. However, potential knock-on effects on higher trophic levels (e.g., rodents, reindeer, and bear) could be unpredictable and large. Repeated warming events year after year, which can be expected under winter climate warming, could result in damage that may take much longer to recover.
Resumo:
Ecosystems at high northern latitudes are subject to strong climate change. Soil processes, such as carbon and nutrient cycles, which determine the functioning of these ecosystems, are controlled by soil fauna. Thus assessing the responses of soil fauna communities to environmental change will improve the predictability of the climate change impacts on ecosystem functioning. For this purpose, trait assessment is a promising method compared to the traditional taxonomic approach, but it has not been applied earlier. In this study the response of a sub-arctic soil Collembola community to long-term (16 years) climate manipulation by open top chambers was assessed. The drought-susceptible Collembola community responded strongly to the climate manipulation, which substantially reduced soil moisture and slightly increased soil temperature. The total density of Collembola decreased by 51% and the average number of species was reduced from 14 to 12. Although community assessment showed species-specific responses, taxonomically based community indices, species diversity and evenness, were not affected. However, morphological and ecological trait assessments were more sensitive in revealing community responses. Drought-tolerant, larger-sized, epiedaphic species survived better under the climate manipulation than their counterparts, the meso-hydrophilic, smaller-sized and euedaphic species. Moreover it also explained the significant responses shown by four taxa. This study shows that trait analysis can both reveal responses in a soil fauna community to climate change and improve the understanding of the mechanisms behind them.
Resumo:
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.
Resumo:
Plant species distributions are expected to shift and diversity is expected to decline as a result of global climate change, particularly in the Arctic where climate warming is amplified. We have recorded the changes in richness and abundance of vascular plants at Abisko, sub-Arctic Sweden, by re-sampling five studies consisting of seven datasets; one in the mountain birch forest and six at open sites. The oldest study was initiated in 1977-1979 and the latest in 1992. Total species number increased at all sites except for the birch forest site where richness decreased. We found no general pattern in how composition of vascular plants has changed over time. Three species, Calamagrostis lapponica, Carex vaginata and Salix reticulata, showed an overall increase in cover/frequency, while two Equisetum taxa decreased. Instead, we showed that the magnitude and direction of changes in species richness and composition differ among sites.
Resumo:
Sub-Arctic marine ecosystems are some of the most productive ecosystems in the world's oceans. The capacity of herbivorous zooplankton, such as Calanus, to biosynthesize and store large amounts of lipids during the short and intense spring bloom is a fundamental adaptation which facilitates the large production in these ecosystems. These energy-rich lipids are rapidly transferred through the food chain to Arctic seals. The fatty acids and stable isotopes from harp seal (Phoca groenlandica) and hooded seal (Cystophora cristata) off East Greenland as well as their potential prey, were analysed. The results were used to describe the lipid dynamics and energy transfer in parts of the East Greenland ecosystem. Even if the two seal species showed considerable overlap in diet and occurred at relatively similar trophic levels, the fatty acid profiles indicated that the bases of the food chains of harp and hooded seals were different. The fatty acids of harp seals originate from diatom-based food chain, whereas the fatty acids of hooded seals originate from dinoflagellate and the prymnesiophyte Phaeocystis pouchetii-based food chain. Stable isotope analyses showed that both species are true carnivores on the top of their food chains, with hooded seal being slightly higher on the food chain than harp seal.
Resumo:
A selection of PBDE congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). The analytes were extracted and cleaned-up using open column extraction and multi-layer silica gel column chromatography, and the analysis was performed on a GC-MS system operating in the NCI mode. The highest PBDE levels were found in the toothed whale species pilot whale and white-sided dolphin, and the lowest levels in fin whales and ringed seals. One-sided analyses of variance (ANOVA) followed by Tukey comparisons of means were applied to test for differences between years and sampling areas. Due to inter-year sampling variability, only general comparisons of PBDE concentrations between different sampling areas could be made. Differences in PBDE concentrations between three sampling periods, from 1986 to 2007, were evaluated in samples of pilot whales, ringed seals, white-sided dolphins and hooded seals. The highest PBDE levels were found in samples from the late 1990s or beginning of 2000, possibly reflecting the increase in the global production of technical PBDE mixtures in the 1990s. The levels of BDE #153 and #154 increased relative to the total PBDE concentration in some of the species in recent years, which may indicate an increased relative exposure to higher brominated congeners. In order to assess the effect of measures taken in legally binding international agreements, it is important to continuously monitor POPs such as PBDEs in sub-Arctic and Arctic environments.