29 resultados para Radioactive decay
Resumo:
Here, for the first time, we have carried out synoptic measurements of viral production and decay rates in continental-shelf and deep-sea sediments of the Mediterranean Sea to explore the viral balance. The net viral production and decay rates were significantly correlated, and were also related to prokaryotic heterotrophic production. The addition of enzymes increased the decay rates in the surface sediments, but not in the subsurface sediments. Both the viral production and the decay rates decreased significantly in the deeper sediment layers, while the virus-to-prokaryote abundance ratio increased, suggesting a high preservation of viruses in the subsurface sediments. Viral decay did not balance viral production at any of the sites investigated, accounting on average for c. 32% of the gross viral production in the marine sediments. We estimate that the carbon (C) released by viral decay contributed 6-23% to the total C released by the viral shunt. Because only ca. 2% of the viruses produced can infect other prokaryotes, the majority is not subjected to direct lysis and potentially remains as a food source for benthic consumers. The results reported here suggest that viral decay can play an important role in biogeochemical cycles and benthic trophodynamics.
Resumo:
A description is given of a gamma-ray spectrometer complex consisting of four interchangeable, low-background NaI(Tl) crystals that operate simultaneously. The system is used in determination of concentrations of natural radioactive elements and sedimentation rates of bottom sediments by the ionium method. Three detector sizes are used, depending on amount of material available: 80x80; 100x100, and 150x150. The system is operated clockwise and data are brought out on a punch tape; results are computer-processed. Examples are shown of the complex use in determining sedimentation rates of bottom sediments in the Southeast Pacific and concentrations of natural radioactive elements in DSDP Hole 381.
Resumo:
Characteristic black nodules have been retrieved in 1922 from the bed of the Kichijo River, that runs along the Tanakamiyama mountain in the Oni Province and ends into Lake Biwa in Japan. Their radiocativity has been studied along with that of crusts of similar nature found covering rock formations in the vicinity overlooking the stream. The high content in radium observed may be due to the high uranium content of the granite host rock typical of the Tanakamiyama formation.