444 resultados para RIFTED-MARGIN


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Voluminous, subaerial magmatism resulted in the formation of extensive seaward-dipping reflector sequences (SDRS) along the Paleogene Southeast Greenland rifted margin. Drilling during Leg 163 recovered basalts from the SDRS at 66ºN (Site 988) and 63ºN (Sites 989 and 990). The basalt from Site 988 is light rare-earth-element (REE) enriched (La(n)/Yb(n) = 3.4), with epsilon-Nd(t=60) = 5.3, 87Sr/86Sr = 0.7034, and 206Pb/204Pb = 17.98. It is similar to tholeiites recovered from the Irminger Basin during Leg 49 and to light-REE-enriched tholeiites from Iceland. Drilling at Site 989, the innermost of the sites on the 63ºN transect, was proposed to extend recovery of the earliest part of the SDRS initiated during Leg 152. These basalts are, however, younger than those from Site 917 and are compositionally similar to basalts from the more seaward Sites 990 and 915. Many of the basalts from Sites 989 and 990 show evidence of contamination by continental crust (e.g., epsilon-Nd(t=60) extends down to -3.7, 206Pb/204Pb extends down to 15.1). We suggest that the contaminant is a mixture of Archean granulite and amphibolite and that the most contaminated basalts have assimilated ~5% of crust. Uncontaminated basalts are isotopically similar to basalts from Site 918, on the main body of the SDRS, and are light-REE depleted. Consistent with previous models of the development of this margin, we show that at the time of formation of the basalts from Sites 989 and 990 (1) melting was at relatively shallow levels in a fully-fledged rift zone; (2) fragments of continental crust were present in the lithosphere above the zones of melt generation; and (3) the sublithospheric mantle was dominated by a depleted Icelandic plume component.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geophysical data acquired using R/V Polarstern constrain the structure and age of the rifted oceanic margin of West Antarctica. West of the Antipodes Fracture Zone, the 145 km wide continent-ocean transition zone (COTZ) of the Marie Byrd Land sector resembles a typical magma-poor margin. New gravity and seismic reflection data indicates initial continental crust of thickness 24 km, that was stretched 90 km. Farther east, the Bellingshausen sector is broad and complex with abundant evidence for volcanism, the COTZ is ~670 km wide, and the nature of crust within the COTZ is uncertain. Margin extension is estimated to be 106-304 km in this sector. Seafloor magnetic anomalies adjacent to Marie Byrd Land near the Pahemo Fracture Zone indicate full-spreading rate during c33-c31 (80-68 Myr) of 60 mm/yr, increasing to 74 mm/yr at c27 (62 Myr), and then dropping to 22 mm/yr by c22 (50 Myr). Spreading rates were lower to the west. Extrapolation towards the continental margin indicates initial oceanic crust formation at around c34y (84 Myr). Subsequent motion of the Bellingshausen plate relative to Antarctica (84-62 Myr) took place east of the Antipodes Fracture Zone at rates <40 mm/yr, typically 5-20 mm/yr. The high extension rate of 30-60 mm/yr during initial margin formation is consistent with steep and symmetrical margin morphology, but subsequent motion of the Bellingshausen plate was slow and complex, and modified rift morphology through migrating deformation and volcanic centers to create a broad and complex COTZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare six high-resolution Holocene, sediment cores along a S-N transect on the Norwegian-Svalbard continental margin from ca 60°N to 77.4°N, northern North Atlantic. Planktonic foraminifera in the cores were investigated to show the changes in upper surface and subsurface water mass distribution and properties, including summer sea-surface temperatures (SST). The cores are located below the axis of the Norwegian Current and the West Spitsbergen Current, which today transport warm Atlantic Water to the Arctic. Sediment accumulation rates are generally high at all the core sites, allowing for a temporal resolution of 10-102 years. SST is reconstructed using different types of transfer functions, resulting in very similar SST trends, with deviations of no more than +- 1.0/1.5 °C. A transfer function based on the maximum likelihood statistical approach is found to be most relevant. The reconstruction documents an abrupt change in planktonic foraminiferal faunal composition and an associated warming at the Younger Dryas-Preboreal transition. The earliest part of the Holocene was characterized by large temperature variability, including the Preboreal Oscillations and the 8.2 k event. In general, the early Holocene was characterized by SSTs similar to those of today in the south and warmer than today in the north, and a smaller S-N temperature gradient (0.23 °C/°N) compared to the present temperature gradient (0.46 °C/°N). The southern proxy records (60-69°N) were more strongly influenced by slightly cooler subsurface water probably due to the seasonality of the orbital forcing and increased stratification due to freshening. The northern records (72-77.4°N) display a millennial-scale change associated with reduced insolation and a gradual weakening of the North Atlantic thermohaline circulation (THC). The observed northwards amplification of the early Holocene warming is comparable to the pattern of recent global warming and future climate modelling, which predicts greater warming at higher latitudes. The overall trend during mid and late Holocene was a cooling in the north, stable or weak warming in the south, and a maximum S-N SST gradient of ca 0.7 °C/°N at 5000 cal. years BP. Superimposed on this trend were several abrupt temperature shifts. Four of these shifts, dated to 9000-8000, 5500-3000 and 1000 and ~400 cal. years BP, appear to be global, as they correlate with periods of global climate change. In general, there is a good correlation between the northern North Atlantic temperature records and climate records from Norway and Svalbard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogenic records of the marine palaeoproductivity (carbonates, organic carbon, and C37 alkenones) and the molecular stratigraphy of past sea surface temperatures (SSTs; UK'37) were studied at high resolution in two cores of the Iberian Margin. The comparison of these records indicates that the oceanographic conditions switched abruptly during the past 160 kyr between three kinds of regimes. A first regime with high (17-22°C) SST and low productivity typifies the interglacial periods, marine isotopic stages (MIS) 5 and 1. Several periods during MIS 6, 2, and the terminations II and I are characterised by about 4-5°C colder SST and a higher organic matter accumulation, both of which define the second regime. This anticorrelation between SST and marine productivity suggests that these variations are related to the intensity of the coastal upwelling. By contrast with this upwelling behaviour, extremely low biological productivity and very cold SST (6-12°C) occurred during short phases of glacial MIS 6, 4, and 2, and as abrupt events (~1 kyr or less) during MIS 3. The three oceanographic regimes are consistent with micropalaeontological changes in the same cores based on foraminifera and diatoms. The general trend of these hydrologic changes follows the long-term glacial/interglacial cycle, but the millennium scale variability is clearly related to Heinrich events and Dansgaard-Oeschger cycles. Strengthening of the upwelling corresponds probably to an intensification of the subtropical atmospheric circulation over the North Atlantic which was influenced by the presence of continental ice sheets. However, extreme glacial conditions due to massive discharges of icebergs interrupted the upwelling. Interestingly, both terminations II and I coincided with strong but transient intensification of the upwelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moderately to sparsely nannofossiliferous Neocomian siliciclastics and rich Aptian-Albian nannofossil chalks were cored at two Leg 123 sites on the abyssal plains off northwestern Australia. At Site 765, the basal 70 m of cored section yields questionable Tithonian and Berriasian to early Hauterivian assemblages of moderate diversity containing Cruelellipsis cuvillieri, Tegumentum striatum, Speetonia colligata, and Crucibiscutum salebrosum. The overlying Hauterivianlower Aptian is represented by 140 m of sediments barren of nannofossils. Above this, the remaining 80 m of the Lower Cretaceous section has been assigned to the Rhagodiscus angustus Zone (late Aptian-early Albian in age) and the Prediscosphaera columnata Zone (middle-late Albian in age). Common species include Rhagodiscus angustus, Prediscosphaera columnata, Eprolithus floralis, Eprolithus sp., Chiastozygus litterarius, Rucinolithus irregularis, and Flabellites biforaminis. At Site 766, the Neocomian, represented by 200 m of sediment, yields C. cuvillieri, T. striatum, S. colligata, and C. salebrosum. Within the overlying Aptian-Albian sequence of 80 m, the Rhagodiscus angustus, and P. columnata zones were recognized. The paleobiogeographic patterns and implications are discussed, with special emphasis paid to the bipolar high-latitude distribution pattern of C. salebrosum in the Valanginian-Hauterivian. Biostratigraphically important species are discussed and their occurrence in the Indian Ocean is compared with one from the Tethys and Boreal realms. Two new species, Serbiscutum gaultensis and Eprolithus bettenstaedtii, are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study compiles the controlling factors for organic matter sedimentation patterns from a suite of organogeochemical parameters in surface sediments off Spitsbergen and direct seabed observations using a Remotely Operated Vehicle (ROV). In addition we assess its storage rates as well as the potential of carbon sinks on the northwestern margin of the Barents Sea with short sediment cores from a selected fjord environment (Storfjord). While sedimentation in the fjords is mainly controlled by river/meltwater discharge and coastal erosion by sea ice/glaciers resulting in high supply of terrigenous organic matter, Atlantic water inflow, and thus enhanced marine organic matter supply, characterizes the environment on the outer shelf and slope. Local deviations from this pattern, particularly on the shelf, are due to erosion and out washing of fine-grained material by bottom currents. Spots dominated by marine productivity close to the island have been found at the outer Isfjord and west off Prins Karls Forland as well as off the Kongsfjord/Krossfjord area and probably reflect local upwelling of nutrient-rich Atlantic water-derived water masses. Accumulation rates of marine organic carbon as well as reconstructed primary productivities decreased since the middle of the last century. Negative correlation of the Isfjord temperature record with reconstructed productivities in the Storfjord could be explained by a reduced annual duration of the marginal ice zone in the area due to global warming. Extremely high accumulation rates of marine organic carbon between 5.4 and 17.2 g/m**2/yr mark the Storfjord area, and probably high-latitude fjord environments in general, as a sink for carbon dioxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few high-latitude terrestrial records document the timing and nature of the Cenozoic "Greenhouse" to "Icehouse" transition. Here we exploit the bulk geochemistry of marine siliciclastic sediments from drill cores on Antarctica's continental margin to extract a unique semiquantitative temperature and precipitation record for Eocene to mid-Miocene (~54-13 Ma). Alkaline elements are strongly enriched in the detrital mineral fraction in fine-grained siliciclastic marine sediments and only occur as trace metals in the biogenic fraction. Hence, terrestrial climofunctions similar to the chemical index of alteration (CIA) can be applied to the alkaline major element geochemistry of marine sediments on continental margins in order to reconstruct changes in precipitation and temperature. We validate this approach by comparison with published paleotemperature and precipitation records derived from fossil wood, leaves, and pollen and find remarkable agreement, despite uncertainties in the calibrations of the different proxies. A long-term cooling on the order of >=8°C is observed between the Early Eocene Climatic Optimum (~54-52 Ma) and the middle Miocene (~15-13 Ma) with the onset of transient cooling episodes in the middle Eocene at ~46-45 Ma. High-latitude stratigraphic records currently exhibit insufficient temporal resolution to reconstruct continental aridity and inferred ice-sheet development during the middle to late Eocene (~45-37 Ma). However, we find an abrupt aridification of East Antarctica near the Eocene-Oligocene transition (~34 Ma), which suggests that ice coverage influenced high-latitude atmospheric circulation patterns through albedo effects from the earliest Oligocene onward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CaCO3-contents and the fractions > 40 µm have been analysed from 5 kastenloten, one piston core and two kastengreifer taken between Senegal and Cape Verde Islands. Numerous benthonic and planktonic organisms and different terrigenous components have been distinguished. The four cores off Senegal reach middle Wuerm sediments; cores GIK12329-6 and TAG72-1 reach the V-zone and core GIK12331-4 the X-zone (Eem); the two kastengreifer contain sediments of Holocene age. Correlation of the cores has been made. Holocene sedimentation rates decrease from the shallow cores (6-11 cm/1000 years) to the deep-sea (1-2 cm/1000 years). The following climatic variations could be deduced from the sediments off the Senegal: during Holocene climate was in general as today, the Senegal river transporting fine grained material to the sea. The upper Wuerm was arid with no river influence but with red dune sand transported to the continental slope. During middle Wuerm the climate was humid again. The deep-sea cores have been influenced by eolian material from arid regions during glacial and interglacial periods, indicated by relatively high "Wuestenquarz-numbers". However, during Wuerm "Wuestenquarz-numbers" are higher than during Holocene and Eem, indicating that more intensely red coloured sediment was exposed to wind activity on the continent during this period. Varying amounts of terrigenous material and CaCO3-contents indicate varying wind strengths (lower in Holocene and Eem than during Wuerm). The boundary between humid and arid Wuerm climate was at approximately 20 °N. Influence of upwelling is difficult to establish in the sediments off Senegal, because river influence, while increasing fertility also dilutes the diatoms which are typical for upwelling. High amounts of organic carbon, low plankton/benthos ratios of foraminifers and low plankton foraminifer/radiolarian ratios in Holocene sections might be interpreted as influenced by upwelling. Turbidites occur in cores 72 and 31 and at the Holocene/Pleistocene boundary of core GIK12329-6. Their composition indicates provenance from the continental shelf of the Cape Verde Islands for core 31 and the continental shelf and slope off Senegal for core TAG72-1. Volcanic material, rare in the normal pelagic sediment of core GIK12331-4 is more frequent in the turbidites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piston core M77/2-024-5 was retrieved during the M77/2 cruise of Research Vessel Meteor in December 2008. Total organic carbon concentrations were determined using a Carlo Erba Element Analyzer (NA1500). Prior to analysis carbon bound to carbonate minerals was removed by leaching the sediment with 1 M HCl. Bulk nitrogen isotope ratios were determined using a Carlo Erba Element Analyzer (NA1500) coupled to a DeltaPlusXL isotope ratio mass spectrometer. Major and trace metals were analyzed after microwave-assisted (CEM MARS-5) acid digestion (HCl, HNO3 and HF) by inductively coupled plasma optical emission spectrometry (aluminum, titanium and iron) (Teledyne Leeman Prodigy) and inductively coupled plasma mass spectrometry (molybdenum and uranium) (THERMO X-Series 2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical, chemical, and mineralogical properties of a set of surface sediment samples collected along the Chilean continental slope (21-44°S) are used to characterise present-day sedimentation patterns and sediment provenance on the Chilean margin. Despite the presence of several exceptional latitudinal gradients in relief, oceanography, tectonic evolution, volcanic activity and onshore geology, the present-day input of terrigenous sediments to the Chilean continental margin appears to be mainly controlled by precipitation gradients, and source-rock composition in the hinterland. General trends in grain size denote a southward decrease in median grain-size of the terrigenous (Corganic, CaCO3 and Opal-free) fraction, which is interpreted as a shift from aeolian to fluvial sedimentation. This interpretation is supported by previous observations of southward increasing bulk sedimentation rates. North-south trends in sediment bulk chemistry are best recognised in the iron (Fe) and titanium (Ti) vs. potassium (K) and aluminium (Al) ratios of the sediments that most likely reflect the contribution of source rocks from the Andean volcanic arc. These ratios are high in the northernmost part, abruptly decrease at 25°S, and then more or less constantly increase southwards to a maximum at ~40°S.