75 resultados para REVERSAL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present monthly resolved records of strontium/calcium (Sr/Ca) and oxygen isotope (d18O) ratios from well-preserved fossil corals drilled during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' and reconstruct sea surface conditions in the central tropical South Pacific Ocean during two time windows of the last deglaciation. The two Tahiti corals examined here are uranium/thorium (U/Th)-dated at 12.4 and 14.2 ka, which correspond to the Younger Dryas (YD) cold reversal and the Bølling-Allerød (B-A) warming of the Northern Hemisphere, respectively. The coral Sr/Ca records indicate that annual average sea surface temperature (SST) was 2.6-3.1 °C lower at 12.4 ka and 1.0-1.6 °C lower at 14.2 ka relative to the present, with no significant changes in the amplitude of the seasonal SST cycle. These cooler conditions were accompanied by seawater d18O (d18Osw) values higher by ~0.8 per mill and ~0.6 per mill relative to the present at 12.4 and 14.2 ka, respectively, implying more saline conditions in the surface waters. Along with previously published coral Sr/Ca records from the island [Cohen and Hart (2004), Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral. Paleoceanography 19, PA4031, doi:10.1029/2004PA001084], our new Tahiti coral records suggest that a shift toward lower SST by ~1.5 °C occurred from 13.1 to 12.4 ka, which was probably associated with a shift toward higher d18Osw by ~0.2 per mill. Along with a previously published coral Sr/Ca record from Vanuatu [Corrège et al. (2004), Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dyras event. Nature 428, 927-929], the Tahiti coral records provide new evidence for a pronounced cooling of the western to central tropical South Pacific during the Northern Hemisphere YD event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prominent middle Eocene warming event is identified in Southern Ocean deep-sea cores, indicating that long-term cooling through the middle and late Eocene was not monotonic. At sites on Maud Rise and the Kerguelen Plateau, a distinct negative shift in d18O values (~1.0 per mil) is observed ca. 41.5 Ma. This excursion is interpreted as primarily a temperature signal, with a transient warming of 4°C over 600 k.y. affecting both surface and middle-bathyal deep waters in the Indian-Atlantic region of the Southern Ocean. This isotopic event is designated as the middle Eocene climatic optimum, and is interpreted to represent a significant climatic reversal in the midst of middle to late Eocene deep-sea cooling. The lack of a significant negative carbon isotope excursion, as observed during the Paleocene-Eocene thermal maximum, and the gradual rate of high-latitude warming suggest that this event was not triggered by methane hydrate dissociation. Rather, a transient rise in pCO2 levels is suspected, possibly as a result of metamorphic decarbonation in the Himalayan orogen or increased ridge/arc volcanism during the late middle Eocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of high sedimentation rates and high concentrations of magnetic grains in cores from Ocean Drilling Program Leg 126 resulted in the recovery of detailed direction and intensity records of the Brunhes/Matuyama geomagnetic polarity reversal. Virtual geomagnetic poles (VGPs) computed from azimuthally oriented samples taken from the cores of Hole 792A in the western Izu-Bonin forearc basin reveal that the geomagnetic pole persisted at moderate to high southern latitudes for several thousand years before a rapid migration to northern latitudes. Alternating-field demagnetization behavior, as well as NRM, NRM/ARM, and NRM/IRM intensities for samples from this same interval, and the NRM/IRM intensities derived from unoriented core samples from Holes 790C and 791B, drilled in the ~100-km distant Sumisu Rift, all suggest that the dipole field oscillated widely in intensity before the reversal. The fast polarity change occurred at the low point of an ~1100-yr field intensity cycle. This "reversal cycle" immediately followed earlier intensity cycles whose peaks rivaled or surpassed the normalized intensities of discrete samples from well above and below the reversal interval; furthermore, the troughs indicate a much diminished dipole field at their nadir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 134 was located in the central part of the New Hebrides Island Arc, in the Southwest Pacific. Here the d'Entrecasteaux Zone of ridges, the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain, is colliding with the arc. The region has a Neogene history of subduction polarity reversal, ridge-arc collision, and back-arc spreading. The reasons for drilling in this region included the following: (1) to determine the differences in the style and time scale of deformation associated with the two ridge-like features (a fairly continuous ridge and an irregularly topographic seamount chain) that are colliding with the central New Hebrides Island Arc; (2) to document the evolution of the magmatic arc in relation to the collision process and possible Neogene reversal of subduction; and (3) to understand the process of dewatering of a small accretionary wedge associated with ridge collision and subduction. Seven sites were occupied during the leg, five (Sites 827-831) were located in the d'Entrecasteaux Zone where collision is active. Three sites (Sites 827, 828, and 829) were located where the North d'Entrecasteaux Ridge is colliding, whereas two sites (Sites 830 and 831) were located in the South d'Entrecasteaux Chain collision zone. Sites 828 (on North d'Entrecasteaux Ridge) and 831 (on Bougainville Guyot) were located on the Pacific Plate, whereas all other sites were located on a microplate of the North Fiji Basin. Two sites (Sites 832 and 831) were located in the intra-arc North Aoba Basin. Results of Leg 134 drilling showed that forearc deformation associated with the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain collision is distinct and different. The d'Entrecasteaux Zone is an Eocene subduction/obduction complex with a distinct submerged island arc. Collision and subduction of the North d'Entrecasteaux Ridge results in off scraping of ridge material and plating of the forearc with thrust sheets (flakes) as well as distinct forearc uplift. Some offscraped sedimentary rocks and surficial volcanic basement rocks of the North d'Entrecasteaux Ridge are being underplated to the New Hebrides Island forearc. In contrast, the South d'Entrecasteaux Chain is a serrated feature resulting in intermittent collision and subduction of seamounts. The collision of the Bougainville Guyot has indented the forearc and appears to be causing shortening through thrust faulting. In addition, we found that the Quaternary relative convergence rate between the New Hebrides Island Arc at the latitude of Espiritu Santo Island is as high as 14 to 16 cm/yr. The northward migration rate of the d'Entrecasteaux Zone was found the be ~2 to 4 cm/yr based on the newly determined Quaternary relative convergence rate. Using these rates we established the timing of initial d'Entrecasteaux Zone collision with the arc at ~3 Ma at the latitude of Epi Island and fixed the impact of the North d'Entrecasteaux Ridge upon Espiritu Santo Island at early Pleistocene (between 1.89 and 1.58 Ma). Dewatering is occurring in the North d'Entrecasteaux Ridge accretionary wedge, and the wedge is dryer than other previously studied accretionary wedges, such as Barbados. This could be the result of less sediment being subducted at the New Hebrides compared to the Barbados.