21 resultados para Psychological Phenomena and Processes.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rise in atmospheric CO2 has caused significant decrease in sea surface pH and carbonate ion (CO3-2) concentration. This decrease has a negative effect on calcification in hermatypic corals and other calcifying organisms. We report the results of three laboratory experiments designed specifically to separate the effects of the different carbonate chemistry parameters (pH, CO3-2, CO2 [aq], total alkalinity [AT], and total inorganic carbon [CT]) on the calcification, photosynthesis, and respiration of the hermatypic coral Acropora eurystoma. The carbonate system was varied to change pH (7.9-8.5), without changing CT; CT was changed keeping the pH constant, and CT was changed keeping the pCO2 constant. In all of these experiments, calcification (both light and dark) was positively correlated with CO3-2 concentration, suggesting that the corals are not sensitive to pH or CT but to the CO3-2 concentration. A decrease of ~30% in the CO3-2 concentration (which is equivalent to a decrease of about 0.2 pH units in seawater) caused a calcification decrease of about 50%. These results suggest that calcification in today's ocean (pCO2 = 370 ppm) is lower by ~20% compared with preindustrial time (pCO2 = 280 ppm). An additional decrease of ~35% is expected if atmospheric CO2 concentration doubles (pCO2 = 560 ppm). In all of these experiments, photosynthesis and respiration did not show any significant response to changes in the carbonate chemistry of seawater. Based on this observation, we propose a mechanism by which the photosynthesis of symbionts is enhanced by coral calcification at high pH when CO2(aq) is low. Overall it seems that photosynthesis and calcification support each other mainly through internal pH regulation, which provides CO3-2 ions for calcification and CO2(aq) for photosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO2 levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO2 is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO2 induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO2 scenario led to a 30% increase in productivity in Acropora, whereas high CO2 lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO2 leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of biogeochemical processes in waters and sediments of the Chukchi Sea in August 2004 revealed atypical maxima of biogenic element (N, P, and Si) concentrations and rate of microbial sulfate reduction in the surface layer (0-3 cm) of marine sediments. The C/N/P ratio in organic matter (OM) of this layer does not fit the Redfield-Richards stoichiometric model. Specific features of biogeochemical processes in the sea are likely related to the complex dynamics of water, high primary produc¬tivity (110-1400 mg C/m**2/day), low depth of the basin (<50 m for 60% of the water area), reduced food chain due to low population of zooplankton, high density of zoobenthos (up to 4230 g/m**2), and high activity of microbial processes. Drastic decrease in concentrations of biogenic elements, iodine, total alkalinity, and population of microorganisms beneath the 0-3 cm layer testify to large-scale OM decay at the water-seafloor barrier. Our original experimental data support high annual rate of OM mineralization at the bottom of the Chukchi Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of future scenarios of progressive accumulation of anthropogenic CO2 in marine surface waters, the present study addresses the effects of long-term hypercapnia on a Mediterranean bivalve, Mytilus galloprovincialis. Sea-water pH was lowered to a value of 7.3 by equilibration with elevated CO2 levels. This is close to the maximum pH drop expected in marine surface waters during atmosextracellular pHric CO2 accumulation. Intra- and extracellular acid-base parameters as well as changes in metabolic rate and growth were studied under both normocapnia and hypercapnia. Long-term hypercapnia caused a permanent reduction in haemolymph pH. To limit the degree of acidosis, mussels increased haemolymph bicarbonate levels, which are derived mainly from the dissolution of shell CaCO3. Intracellular pH in various tissues was at least partly compensated; no deviation from control values occurred during long-term measurements in whole soft-body tissues. The rate of oxygen consumption fell significantly, indicating a lower metabolic rate. In line with previous reports, a close correlation became evident between the reduction in extracellular pH and the reduction in metabolic rate of mussels during hypercapnia. Analysis of frequency histograms of growth rate revealed that hypercapnia caused a slowing of growth, possibly related to the reduction in metabolic rate and the dissolution of shell CaCO3 as a result of extracellular acidosis. In addition, increased nitrogen excretion by hypercapnic mussels indicates the net degradation of protein, thereby contributing to growth reduction. The results obtained in the present study strongly indicate that a reduction in sea-water pH to 7.3 may be fatal for the mussels. They also confirm previous observations that a reduction in sea-water pH below 7.5 is harmful for shelled molluscs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence of increasing concentrations of dissolved carbon dioxide, especially in the surface ocean and its associated impacts on calcifying organisms, is accumulating. Among these organisms, benthic and planktonic foraminifera are responsible for a large amount of the globally precipitated calcium carbonate. Hence, their response to an acidifying ocean may have important consequences for future inorganic carbon cycling. To assess the sensitivity of benthic foraminifera to changing carbon dioxide levels and subsequent alteration in seawater carbonate chemistry, we cultured specimens of the shallow water species Ammonia tepida at two concentrations of atmospheric CO2 (230 and 1900 ppmv) and two temperatures (10 °C and 15 °C). Shell weights and elemental compositions were determined. Impact of high and low pCO2 on elemental composition are compared with results of a previous experiment were specimens were grown under ambient conditions (380 ppvm, no shell weight measurements of specimen grown under ambient conditions are, however, available). Results indicate that shell weights decrease with decreasing [CO3], although calcification was observed even in the presence of calcium carbonate under-saturation, and also decrease with increasing temperature. Thus both warming and ocean acidification may act to decrease shell weights in the future. Changes in [CO3] or total dissolved inorganic carbon do not affect the Mg distribution coefficient. On the contrary, Sr incorporation is enhanced under increasing [CO3]. Implications of these results for the paleoceanographic application of foraminifera are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased carbon dioxide (CO2) concentration in the atmosphere will change the balance of the components of carbonate chemistry and reduce the pH at the ocean surface. Here, we report the effects of increased CO2 concentration on the early development of the sea urchins Hemicentrotus pulcherrimus and Echinometra mathaei. We examined the fertilization, early cleavage, and pluteus larval stage to evaluate the impact of elevated CO2 concentration on fertilization rate, cleavage rate, developmental speed, and pluteus larval morphology. Furthermore, we compared the effects of CO2 and HCl at the same pH in an attempt to elucidate any differences between the two. We found that fertilization rate, cleavage rate, developmental speed, and pluteus larval size all tended to decrease with increasing CO2 concentration. Furthermore, CO2-seawater had a more severe effect than HCl-seawater on the fertilization rate. By contrast, the effects on cleavage rate, developmental speed, and pluteus larval morphology were similar for CO2- and HCl-seawater. Our results suggest that both decreased pH and altered carbonate chemistry affect the early development and life history of marine animals, implying that increased seawater CO2 concentration will seriously alter marine ecosystems. The effects of CO2 itself on marine organisms therefore requires further clarification.