43 resultados para Primary and secondary schools


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An upper Aptian to middle Albian series of volcaniclastic rocks more than 300 m thick was drilled at Site 585 in the East Mariana Basin. On the basis of textural and compositional (bulk-rock chemistry, primary and secondary mineral phases) evidence, the volcaniclastic unit is subdivided into a lower (below 830 m sub-bottom) and an upper (about 670-760 m) sequence; the boundary in the interval between is uncertain owing to lack of samples. The rocks are dominantly former vitric basaltic tuffs and minor lapillistones with lesser amounts of crystals and basaltic lithic clasts. They are mixed with shallow-water carbonate debris (ooids, skeletal debris), and were transported by mass flows to their site of deposition. The lower sequence is mostly plagioclase- and olivine-phyric with lesser amounts of Ti-poor clinopyroxene. Mineralogical and bulk-rock chemical data indicate a tholeiitic composition slightly more enriched than N-MORB (normal mid-ocean ridge basalt). Transport was by debris flows from shallow-water sites, as indicated by admixed ooids. Volcanogenic particles are chiefly moderately vesicular to nonvesicular blocky shards (former sideromelane) and less angular tachylite with quench plagioclase and pyroxene, indicating generation of volcanic clasts predominantly by spalling and breakage of submarine pillow and/or sheet-flow lavas. The upper sequence is mainly clinopyroxene- and olivine-phyric with minor plagioclase. The more Ti-rich clinopyroxene and the bulk-rock analyses show that the moderately alkali basaltic composition throughout is more mafic than the basal tholeiitic sequence. Transport was by turbidity currents. Rounded epiclasts of crystalline basalts are more common than in the lower sequence, and, together with the occurrence of oxidized olivine pseudomorphs and vesicular tachylite, are taken as evidence of derivation from eroded subaerially exposed volcanics. Former sideromelane shards are more vesicular than in the lower sequence; vesicularity exceeds 60 vol.% in some clasts. The dominant clastic process is interpreted to be by shallow-water explosive eruptions. All rocks have undergone low-temperature alteration; the dominant secondary phases are "palagonite," chlorite/smectite mixed minerals, analcite, and chabazite. Smectite, chlorite, and natrolite occur in minor amounts. Phillipsite is recognized as an early alteration product, now replaced by other zeolites. During alteration, the rocks have lost up to 50% of their Ca, compared with a fresh shard and fresh glass inclusions in primary minerals, but have gained much less K, Rb, and Ba than expected, indicating rapid deposition prior to significant seafloor weathering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Megabenthos plays a major role in the overall energy flow on Arctic shelves, but information on megabenthic secondary production on large spatial scales is scarce. Here, we estimated for the first time megabenthic secondary production for the entire Barents Sea shelf by applying a species-based empirical model to an extensive dataset from the joint Norwegian? Russian ecosystem survey. Spatial patterns and relationships were analyzed within a GIS. The environmental drivers behind the observed production pattern were identified by applying an ordinary least squares regression model. Geographically weighted regression (GWR) was used to examine the varying relationship of secondary production and the environment on a shelfwide scale. Significantly higher megabenthic secondary production was found in the northeastern, seasonally ice-covered regions of the Barents Sea than in the permanently ice-free southwest. The environmental parameters that significantly relate to the observed pattern are bottom temperature and salinity, sea ice cover, new primary production, trawling pressure, and bottom current speed. The GWR proved to be a versatile tool for analyzing the regionally varying relationships of benthic secondary production and its environmental drivers (R² = 0.73). The observed pattern indicates tight pelagic? benthic coupling in the realm of the productive marginal ice zone. Ongoing decrease of winter sea ice extent and the associated poleward movement of the seasonal ice edge point towards a distinct decline of benthic secondary production in the northeastern Barents Sea in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basalts from DSDP Site 417 (109 Ma) exhibit the effects of several stages of alteration reflecting the evolution of seawater-derived solution compositions and control by the structure and permeability of the crust. Characteristic secondary mineral assemblages occur in often superimposed alteration zones within individual basalt fragments. By combining bulk rock and single phase chemical analyses with detailed mineralogic and petrographic studies, chemical changes have been determined for most of the alteration stages identified in the basalts. 1) Minor amounts of saponite, chlorite, and pyrite formed locally in coarse grained portions of massive units, possibly at high temperatures during initial cooling of the basalts. No chemical changes could be determined for this stage. 2) Possible mixing of cooled hydrothermal fluids with seawater resulted in the formation of celadonite-nontronite and Fe-hydroxide-rich black halos around cracks and pillow rims. Gains of K, Rb, H20, increase of Fe 3 +/FeT and possibly some losses of Ca and Mg occurred during this stage. 3a) Extensive circulation of oxygenated seawater resulted in the formation of various smectites, K-feldspar, and Fe-hydroxides in brown and light grey alteration zones around formerly exposed surfaces. K, Rb, H20, and occasionally P were added to the rocks, Fe3+/FeT increased, and Ca, Mg, Si and occasionally Al and Na were lost. 3 b) Anoxic alteration occurred during reaction of basalt with seawater at low water-rock ratios, or with seawater that had previously reacted with basalt. Saponite-rich dark grey alteration zones formed which exhibit very little chemical change: generally only slight increases in Fe 3 +/FeT and H20 occurred. 4) Zeolites and calcite formed from seawater-derived fluids modified by previous reactions with basalt. Chemical changes involved increases of Ca, Na, H20 , and CO2 in the rocks. 5) A late stage of anoxic conditions resulted in the formation of minor amounts of Mn-calcites and secondary sulfides in previously oxidized rocks. No chemical changes were determined for this stage. Recognition of such alteration sequences is important in understanding the evolution of submarine hydrothermal systems and in interpreting chemical exchange due to seawater-basalt reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that microscopic algae dominate in source material of organic matter of black shales, and admixture of residues of organisms and terrestrial humic material is contained. The main direction of source material transformation during syngenesis and sedimentogenesis is associated with jellofication resulting to formation of organic matter of significantly sapropelic type. Low reflectance of vitrinite and alginite from organic matter refer to the primary and secondary lignite stages of its carbonification. Significantly sapropel type of organic matter and low stage of carbonification are reliable criteria for assigning black shales to the category of potential oil source strata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We detail the petrography and mineralogy of 145 basaltic rocks from the top, middle, and base of flow units identified on shipboard along with associated pyroclastic samples. Our account includes representative electron microprobe analyses of primary and secondary minerals; 28 whole-rock major-oxide analyses; 135 whole-rock analyses each for 21 trace elements; 7 whole-rock rare-earth analyses; and 77 whole-rock X-ray-diffraction analyses. These data show generally similar petrography, mineralogy, and chemistry for the basalts from all four sites; they are typically subalkaline and consanguineous with limited evolution along the tholeiite trend. Limited fractionation is indicated by immobile trace elements; some xenocrystic incorporation from more basic material also occurred. Secondary alteration products indicate early subaerial weathering followed by prolonged interaction with seawater, most likely below 150°C at Holes 552, 553A, and 554A. At Hole 555, greenschist alteration affected the deepest rocks (olivine-dolerite) penetrated, at 250-300°C.