96 resultados para Plantin, Christophe, ca. 1520-1589.
Resumo:
Earth's climate underwent a fundamental change between 1250 and 700 thousand years ago, the Mid-Pleistocene Transition (MPT), when the dominant periodicity of climate cycles changed from 41,000 to 100,000 years in the absence of significant change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios. Our results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume at 900 ka. We see no evidence of a pattern of gradual cooling but near-freezing temperatures occur at every glacial maximum.
Resumo:
We present and examine a multi-sensor global compilation of mid-Holocene (MH) sea surface temperatures (SST), based on Mg/Ca and alkenone palaeothermometry and reconstructions obtained using planktonic foraminifera and organic-walled dinoflagellate cyst census counts. We assess the uncertainties originating from using different methodologies and evaluate the potential of MH SST reconstructions as a benchmark for climate-model simulations. The comparison between different analytical approaches (time frame, baseline climate) shows the choice of time window for the MH has a negligible effect on the reconstructed SST pattern, but the choice of baseline climate affects both the magnitude and spatial pattern of the reconstructed SSTs. Comparison of the SST reconstructions made using different sensors shows significant discrepancies at a regional scale, with uncertainties often exceeding the reconstructed SST anomaly. Apparent patterns in SST may largely be a reflection of the use of different sensors in different regions. Overall, the uncertainties associated with the SST reconstructions are generally larger than the MH anomalies. Thus, the SST data currently available cannot serve as a target for benchmarking model simulations.
Resumo:
Records of Cd/Ca in planktonic foraminiferal calcite of Globigerinoides bulloides in cores from the Subantarctic region of the Southern Ocean show large glacial-interglacial variations with lower Cd/Ca (by 0.06-0.10 µmol/mol) at glacial times. Interpretation of these records in terms of lower dissolved phosphate and inferred higher glacial nutrient utilization has significant implications for glacial atmospheric carbon dioxide (pCO2) draw-down. However, box core-top data for G. bulloides in the North Atlantic suggest that the incorporation of Cd into planktonic foraminifera relative to seawater (DCd) is temperature sensitive (DCd=0.637 exp 0.15T). When the Subantarctic planktonic Cd/Ca records are corrected for this temperature dependence, they show little or no glacial-interglacial diferences. If, as seems likely, this observation can be interpreted to indicate a minimal change (< 0.5 µmol/kg) in surface water phosphate concentrations, then the explanation for lowered glacial pCO2 must be looked for elsewhere.