27 resultados para Pacius, Fredrik,
Resumo:
Most studies on the impact of near-future levels of carbon dioxide on fish behaviour report behavioural alterations, wherefore abnormal behaviour has been suggested to be a potential consequence of future ocean acidification and therefore a threat to ocean ecosystems. However, an increasing number of studies show tolerance of fish to increased levels of carbon dioxide. This variation among studies in susceptibility highlights the importance of continued investigation of the possible effects of elevated pCO2. Here, we investigated the impacts of increased levels of carbon dioxide on behaviour using the goldsinny wrasse (Ctenolabrus rupestris), which is a common species in European coastal waters and widely used as cleaner fish to control sea lice infestation in commercial fish farming in Europe. The wrasses were exposed to control water conditions (370 µatm) or elevated pCO2 (995 µatm) for 1 month, during which time behavioural trials were performed. We investigated the possible effects of CO2 on behavioural lateralization, swimming activity, and prey and predator olfactory preferences, all behaviours where disturbances have previously been reported in other fish species after exposure to elevated CO2. Interestingly, we failed to detect effects of carbon dioxide for most behaviours investigated, excluding predator olfactory cue avoidance, where control fish initially avoided predator cue while the high CO2 group was indifferent. The present study therefore shows behavioural tolerance to increased levels of carbon dioxide in the goldsinny wrasse. We also highlight that individual fish can show disturbance in specific behaviours while being apparently unaffected by elevated pCO2 in other behavioural tests. However, using experiments with exposure times measured in weeks to predict possible effects of long-term drivers, such as ocean acidification, has limitations, and the behavioural effects from elevated pCO2 in this experiment cannot be viewed as proof that these fish would show the same reaction after decades of evolution.
Resumo:
As an effect of anthropogenic CO2 emissions, the chemistry of the world's oceans is changing. Understanding how this will affect marine organisms and ecosystems are critical in predicting the impacts of this ongoing ocean acidification. Work on coral reef fishes has revealed dramatic effects of elevated oceanic CO2 on sensory responses and behavior. Such effects may be widespread but have almost exclusively been tested on tropical reef fishes. Here we test the effects elevated CO2 has on the reproduction and early life history stages of a temperate coastal goby with paternal care by allowing goby pairs to reproduce naturally in an aquarium with either elevated (ca 1400 µatm) CO2 or control seawater (ca 370 µatm CO2). Elevated CO2 did not affect the occurrence of spawning nor clutch size, but increased embryonic abnormalities and egg loss. Moreover, we found that elevated CO2 significantly affected the phototactic response of newly hatched larvae. Phototaxis is a vision-related fundamental behavior of many marine fishes, but has never before been tested in the context of ocean acidification. Our findings suggest that ocean acidification affects embryonic development and sensory responses in temperate fishes, with potentially important implications for fish recruitment.
Resumo:
A series of samples from the five sites drilled across the continental shelf and upper slope in Prydz Bay during ODP Leg 119 were consolidation tested in an oedometer. Preconsolidation stresses increase downcore at Sites 739 and 742 in a stepwise manner, and the steps are interpreted to represent periods of increased action of grounded glaciers covering the entire shelf. By the use of theoretical ice sheet surface profiles giving the range of possible ice thicknesses, sediment loading and subsequent erosion seem to be the most important factor for increasing the overconsolidation ratios, and a total glacial erosion exceeding 1 km is possible. Four separate steps in consolidation, here termed "load events" have been identified. The lowermost load event, 1, is correlated to the onset of glaciations reaching the shelf edge and an early period of extensive glaciations, starting in early Oligocene or possibly earlier. Glacial activity related to the buildup of ice in West Antarctica in the late Miocene is tentatively correlated to load event 2. Event 3 is the trace of relatively extensive glacial erosion probably in the Pliocene, whereas the upper step in preconsolidation stress, load event 4, results from the last glaciation reaching the shelf edge, possibly during the late Weichselian. Correlations to other data related to Antarctic glacial history are, however, hampered by the poor age control of the cored diamictites. Consolidation tests may provide a tool for finding the position for hiatuses and unconformities formed subglacially and obscured by subglacial reworking.
Resumo:
Site 986 was drilled to 965 meters below seafloor (mbsf) on the western Svalbard margin to record the onset of glaciations and to date and document the glacial evolution in the Svalbard-Barents Sea region during the Pliocene-Pleistocene. In this paper, results of sedimentological analyses are discussed in light of seismic stratigraphy and new age determinations. The latter were difficult to obtain in the glacial deposits, and datums are sparse. Through combined paleomagnetic data, biostratigraphy, and Sr isotopes, however, an overall chronology for the main evolutionary steps is suggested. The cored sequence at Site 986 is younger than 2.6 Ma, and the lower 60 m of the section contains no evidence of a major glacial influence. An initial glaciation is interpreted to have occurred at ~2.3 Ma, resulting in increased sand deposition from debris flows at Site 986 and forming a prominent seismic reflector, R7. However, glaciers probably did not reach the shelf break until ~1.6-1.7 Ma (Reflector R6), after which the depositional environment was dominated by diamictic debris flows. A gradual change in source area from the Barents Sea to Svalbard is recorded primarily by changes in carbonate and smectite content, ~355 mbsf (Reflector R5), at an interpolated age of 1.4-1.5 Ma. During the last ~1 m.y., Site 986 has undergone more distal deposition as the main depocenters have shifted laterally. This has resulted in less frequent debris flows and more turbidites and hemipelagic deposits, with a slight fining upward of the cored sediments.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.