59 resultados para PHYSIOLOGICAL EQUIVALENT TEMPERATURE
Resumo:
Biochemical composition, feeding and oxygen uptake rate of mass planktic copepod Calanoides carinatus were studied off the coast of Namibia in January 1986. Population of this species in the area had two parts: the surface group inhabiting the 0-100 m layer and the deep part inhabiting depths greater than 200 m. Individuals in the surface and deep parts of the population differed in food content of guts, lipid content of bodies, oxygen uptake rate and behavior. Differences in biochemical composition and rate of physiological processes indicate that individuals in the deep part of the population are in diapause. Nature of changes in biochemical composition of C. carinatus in surface and deep waters in relation to life cycle characteristics in upwelling waters are discussed.
Resumo:
Excessive CO2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partially repair shell dissolution. These observations of the long-term chronic effects of increased CO2 levels forewarn of changes we can expect in marine ecosystems as CO2 emissions continue to rise unchecked, and support the hypothesis that ocean acidification contributed to past extinction events. The ability to adapt through dwarfing can confer physiological advantages as the rate of CO2 emissions continues to increase.
Resumo:
Organisms that are distributed across spatial climate gradients often exhibit adaptive local variations in morphological and physiological traits, but to what extent such gradients shape evolutionary responses is still unclear. Given the strong natural contrast in latitudinal temperature gradients between the North-American Pacific and Atlantic coast, we asked how increases in vertebral number (VN, known as Jordan's Rule) with latitude would differ between Pacific (Atherinops affinis) and Atlantic Silversides (Menidia menidia), two ecologically equivalent and taxonomically similar fishes with similar latitudinal distributions. VN was determined from radiographs of wild-caught adults (genetic + environmental differences) and its genetic basis confirmed by rearing offspring in common garden experiments. Compared to published data on VN variation in M. menidia (a mean increase of 7.0 vertebrae from 32 to 46°N, VN slope = 0.42/lat), the latitudinal VN increase in Pacific Silversides was approximately half as strong (a mean increase of 3.3 vertebrae from 28 to 43°N, VN slope = 0.23/lat). This mimicked the strong Atlantic (1.11°C/lat) versus weak Pacific latitudinal gradient (0.40°C/lat) in median annual sea surface temperature (SST). Importantly, the relationship of VN to SST was not significantly different between the two species (average slope = -0.39 vertebrae/°C), thus suggesting a common thermal dependency of VN in silverside fishes. Our findings provide novel support for the hypothesis that temperature gradients are the ultimate cause of Jordan's Rule, even though its exact adaptive significance remains speculative. A second investigated trait, the mode of sex determination in Atlantic versus Pacific Silversides, revealed patterns that were inconsistent with our expectation: M. menidia displays temperature-dependent sex determination (TSD) at low latitudes, where growing seasons are long or unconstrained, but also a gradual shift to genetic sex determination (GSD) with increasing latitude due to more and more curtailed growing seasons. Sex ratios in A. affinis, on the other hand, were independent of latitude and rearing temperature (indicating GSD), even though growing seasons are thermally unconstrained across most of the geographical distribution of A. affinis. This suggests that additional factors (e.g., longevity) play an important role in shaping the mode of sex determination in silverside fishes.
Resumo:
The final phase of the closure of the Panamanian Gateway and the intensification of Northern Hemisphere Glaciation (NHG) both occurred during the Late Pliocene. Glacial-interglacial (G-IG) variations in sea level might, therefore, have had a significant impact on the remaining connections between the East Pacific and the Caribbean. Here, we present combined foraminiferal Mg/Ca and d18O measurements from Ocean Drilling Program (ODP) Site 1241 from the East Pacific and ODP Site 999 from the Caribbean. The studied time interval covers the first three major G-IG Marine Isotope Stages (MIS 95-100, ~2.5 Ma) after the intensification of NHG. Analyses were performed on the planktonic foraminifera Neogloboquadrina dutertrei and Globigerinoides sacculifer, representing water mass properties in the thermocline and the mixed-layer, respectively. Changes in sea water temperature, relative salinity, and water column stratification strongly suggest that the Panamanian Gateway temporarily closed during glacial MIS 98 and 100, as a result of changes in ice volume equivalent to a drop in sea level of 60-90 m. Reconstructed sea surface temperatures (SST) from G. sacculifer show a glacial decrease of 2.5°C at Site 1241, but increases of up to 3°C at Site 999 during glacial MIS 98 and 100 suggesting that the Panamanian Gateway closed during these glacial periods. The Mg/Ca-temperatures of N. dutertrei remain relatively stable in the East Pacific, but do show a 3°C warming in the Caribbean at the onset of these glacial periods suggesting that the closing of the gateway also changed the water column stratification. We infer that the glacial closure of the gateway allowed the Western Atlantic Warm Pool to extend into the southern Caribbean, increasing SST (G. sacculifer) and deepening the thermocline (N. dutertrei). Additionally, ice volume appears to have become large enough during MIS 100 to survive the relatively short lasting interglacial MIS 99 so that the gateway remained closed. Towards the end of MIS 98, during MIS 97 and into MIS 96 temperatures on both sides are mostly similar suggesting water masses exchanged again. Additionally, Caribbean variations in SST and d18Owater follow a precession-like cyclicity rather than the obliquity-controlled variations characteristic of the East-Pacific and many other tropical areas, suggesting that regional atmospheric processes related to the trade winds and the Intertropical Convergence Zone (ITCZ) had a dominant impact in the Caribbean.
Resumo:
How organisms may adapt to rising global temperatures is uncertain, but concepts can emerge from studying adaptive physiological trait variations across existing spatial climate gradients. Many ectotherms, particularly fish, have evolved increasing genetic growth capacities with latitude (i.e. countergradient variation (CnGV) in growth), which are thought to be an adaptation primarily to strong gradients in seasonality. In contrast, evolutionary responses to gradients in mean temperature are often assumed to involve an alternative mode, 'thermal adaptation'. We measured thermal growth reaction norms in Pacific silverside populations (Atherinops affinis) occurring across a weak latitudinal temperature gradient with invariant seasonality along the North American Pacific coast. Instead of thermal adaptation, we found novel evidence for CnGV in growth, suggesting that CnGV is a ubiquitous mode of reaction-norm evolution in ectotherms even in response to weak spatial and, by inference, temporal climate gradients. A novel, large-scale comparison between ecologically equivalent Pacific versus Atlantic silversides (Menidia menidia) revealed how closely growth CnGV patterns reflect their respective climate gradients. While steep growth reaction norms and increasing growth plasticity with latitude in M. menidia mimicked the strong, highly seasonal Atlantic coastal gradient, shallow reaction norms and much smaller, latitude-independent growth plasticity in A. affinis resembled the weak Pacific latitudinal temperature gradient.
Resumo:
Exposure to elevated seawater PCO2 limits the thermal tolerance of crustaceans but the underlying mechanisms have not been comprehensively explored. Larval stages of crustaceans are even more sensitive to environmental hypercapnia and possess narrower thermal windows than adults. In a mechanistic approach, we analysed the impact of high seawater CO2 on parameters at different levels of biological organization, from the molecular to the whole animal level. At the whole animal level we measured oxygen consumption, heart rate and activity during acute warming in zoea and megalopa larvae of the spider crab Hyas araneus exposed to different levels of seawater PCO2. Furthermore, the expression of genes responsible for acid-base regulation and mitochondrial energy metabolism, and cellular responses to thermal stress (e.g. the heat shock response) was analysed before and after larvae were heat shocked byrapidly raising the seawater temperature from 10°C rearing temperature to 20°C. Zoea larvae showed a high heat tolerance, which decreased at elevated seawater PCO2, while the already low heat tolerance of megalopa larvae was not limited further by hypercapnic exposure. There was a combined effect of elevated seawater CO2 and heat shock in zoea larvae causing elevated transcript levels of heat shock proteins. In all three larval stages, hypercapnic exposure elicited an up-regulation of genes involved in oxidative phosphorylation, which was, however, not accompanied by increased energetic demands. The combined effect of seawater CO2 and heat shock on the gene expression of heat shock proteins reflects the downward shift in thermal limits seen on the whole animal level and indicates an associated capacity to elicit passive thermal tolerance. The up-regulation of genes involved in oxidative phosphorylation might compensate for enzyme activities being lowered through bicarbonate inhibition and maintain larval standard metabolic rates at high seawater CO2 levels. The present study underlines the necessity to align transcriptomic data with physiological responses when addressing mechanisms affected by an interaction of elevated seawater PCO2 and temperature extremes.
Resumo:
We tested the hypothesis that development of the Antarctic urchin Sterechinus neumayeri under future ocean conditions of warming and acidification would incur physiological costs, reducing the tolerance of a secondary stressor. The aim of this study is twofold: (1) quantify current austral spring temperature and pH near sea urchin habitat at Cape Evans in McMurdo Sound, Antarctica and (2) spawn S. neumayeri in the laboratory and raise early developmental stages (EDSs) under ambient (-0.7 °C; 400 µatm pCO2) and future (+2.6 °C; 650 and 1,000 µatm pCO2) ocean conditions and expose four EDSs (blastula, gastrula, prism, and 4-arm echinopluteus) to a one hour acute heat stress and assess survivorship. Results of field data from 2011 to 2012 show extremely stable inter-annual pH conditions ranging from 7.99 to 8.08, suggesting that future ocean acidification will drastically alter the pH-seascape for S. neumayeri. In the laboratory, S. neumayeri EDSs appear to be tolerant of temperatures and pCO2 levels above their current habitat conditions. EDSs survived acute heat exposures >20 °C above habitat temperatures of -1.9 °C. No pCO2 effect was observed for EDSs reared at -0.7 °C. When reared at +2.6 °C, small but significant pCO2 effects were observed at the blastula and prism stage, suggesting that multiple stressors are more detrimental than single stressors. While surprisingly tolerant overall, blastulae were the most sensitive stage to ocean warming and acidification. We conclude that S. neumayeri may be unexpectedly physiologically tolerant of future ocean conditions.
Resumo:
In arctic populations of Macrothrix hirsuticornis life cycles are mainly governed by temperature. This was found by using laboratory cultures in combination with the analysis of population samples from waters in Svalbard. In arctic waters ex-ephippio-++ usually produce gamogenetic F1-++ together with a high percentage of oo, which have to fertilize the resting eggs. Temperatures around 14°C, which are very rare in waters of Svalbard, will induce parthenogenetic oo in the F1 and even the F2-generation, a mode of reproduction normally found in Macrothrix-populations of Central Europe. This was found in laboratory cultures of M. hirsuticornis from Bear Island, and there was evidence, that a similar cycle occurs in warm wells in Spitsbergen. The arctic distribution of M. hirsuticornis mainly depends on temperature, which regulates the speed of individual development. But this can only be understood together with the length of time, during which suitable life conditions are given. Physiological adaptations to life in waters in high latitudes could not be found, in spite of the extreme northern occurrence of M. hirsuticornis.
Resumo:
Background. Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end of century open ocean pH reductions. Projected and current ocean acidification have wide-ranging effects on many aquatic organisms, however the exact mechanisms of the impacts of ocean acidification on many of these animals remains to be characterized. Methods. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different pCO2 levels for four weeks: 400 µatm (pH 8.0), 800 µatm (pH 7.7), 1000 µatm (pH 7.6), or 2800 µatm (pH 7.3). At the end of 4 weeks a variety of physiological parameters were measured to assess the impacts of ocean acidification: tissue glycogen content and fatty acid profile, shell micromechanical properties, and response to acute heat shock. To determine the effects of ocean acidification on the underlying molecular physiology of oysters and their stress response, some of the oysters from 400 µatm and 2800 µatm were exposed to an additional mechanical stress and shotgun proteomics were done on oysters from high and low pCO2 and from with and without mechanical stress. Results. At the end of the four week exposure period, oysters in all four pCO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated pCO2. Elevated pCO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with pCO2, with numerous processes significantly affected by mechanical stimulation at high versus low pCO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Discussion. Oyster physiology is significantly altered by exposure to elevated pCO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of pCO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.
Resumo:
The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. Its impact will depend on the considered organisms and ecosystems. The intertidal may harbor organisms pre-adapted to the upcoming changes as they face tidal pH and temperature fluctuations. However, these environments will be more affected as shallow waters will face the highest decrease in seawater pH. In this context, the effects of reduced environmental pH on the physiology and tube feet mechanical properties of the intertidal starfish Asterias rubens, a top predator, were investigated during 15 and 27 days. A. rubens showed a respiratory acidosis with its coelomic fluid pH always lower than that of seawater. This acidosis was most pronounced at pH 7.4. Notwithstanding, the starfish showed no significant variations in RNA/DNA ratio of different tissues and in tube feet strength. However, respiration rates were significantly lower for individuals maintained at reduced seawater pH. Within the ocean acidification context, the present results suggest that A. rubens withstands the effects of reduced seawater pH, at least for medium term exposures.
Resumo:
Seasonality of biomarker baseline levels were studied in polar cod (Boreogadus saida), caught in Kongsfjorden, Svalbard, in April, July, September and December, 2006-2007. Physiological parameters (condition factor, gonado- and hepato-somatic indexes, energy reserves, potential metabolic activity and antifreeze activity) in polar cod were used to interpret the seasonality of potential biomarkers. The highest levels of ethoxyresorufin-O-deethylase (EROD) activity occurred concomitantly with the highest potential metabolic activity in July due to e.g. intense feeding. During pre-spawning, EROD showed significant inhibition and gender differences. Hence, its potential use in environmental monitoring should imply gender differentiation at least during this period. Glutathione S-transferase and catalase activities were stable from April to September, but changed in December suggesting a link to low biological activity. Knowledge of the biomarker baseline levels and their seasonal trends in polar cod is essential for a trustworthy interpretation of forthcoming toxicity data and environmental monitoring in the Arctic.
Resumo:
As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
Resumo:
Coralline algae are major calcifiers of significant ecological importance in marine habitats but are among the most sensitive calcifying organisms to ocean acidification. The elevated pCO2 effects were examined in three coralline algal species living in contrasting habitats from intertidal to subtidal zones on the north-western coast of Brittany, France: (i) Corallina elongata, a branched alga found in tidal rock pools, (ii) Lithophyllum incrustans, a crustose coralline alga from the low intertidal zone, and (iii) Lithothamnion corallioides (maerl), a free-living form inhabiting the subtidal zone. Metabolic rates were assessed on specimens grown for one month at varying pCO2: 380 (current pCO2), 550, 750 and 1000 µatm (elevated pCO2). There was no pCO2 effect on gross production in C. elongata and L. incrustans but L. incrustans respiration strongly increased with elevated pCO2. L. corallioides gross production slightly increased at 1000 µatm, while respiration remained unaffected. Calcification rates decreased with pCO2 in L. incrustans (both in the light and dark) and L. corallioides (only in the light), while C. elongata calcification was unaffected. This was consistent with the lower skeletal mMg/Ca ratio of C. elongata (0.17) relative to the two other species (0.20). L. incrustans had a higher occurrence of bleaching that increased with increasing pCO2. pCO2 could indirectly impact this coralline species physiology making them more sensitive to other stresses such as diseases or pathogens. These results underlined that the physiological response of coralline algae to near-future ocean acidification is species-specific and that species experiencing naturally strong pH variations were not necessarily more resistant to elevated pCO2 than species from more stable environment.