314 resultados para PHOSPHATE ROCKS
Resumo:
In order to elucidate possibility of limestone phosphatization during contact with seawater two sets of experiments were carried out: that of solubility of natural phosphates in seawater and that of deposition of phosphorus onto calcareous phase. Concentration of phosphorus in seawater used for solubility experiments varied from 39 to 338 µ/l, temperature was 5.5-17.5°C and pH 7.8-7.9. The lowest solubility was characteristic of ancient crystallized samples. The deposition experiments showed that in case when concentration of dissolved phosphate in seawater reaches 3 mg/l it might be sorbed on solid CaCO3 phase without forming its own mineral. The latter is able to form rapidly but only if magnesium is not present in solution. In magnesium-free water calcium phosphates precipitate when concentration of dissolved phosphorus is higher than 0.9-1.2 mg/l. These results show that phosphatization of limestones in marine environment takes place during their contact with pore water but not with marine bottom water.
Resumo:
The book is devoted to geology of the Philippine Sea floor. This region is studied most extensively among other marginal seas of the Pacific Ocean. Rocks of the sedimentary and basalt layers within this sea have been studied during five legs of D/S Glomar Challenger. International geological expedition on board R/V Dmitry Mendeleev carried out according to the Project ''Ophiolites of Continents and Comparable Rocks of the Ocean Floor''obtained unique collection of rocks from the second and third layers of the ocean crust in the Philippine Sea. The book provides detailed petrographic and geochemical description of igneous and sedimentary formations from the Philippine Sea and compares them with rocks of the continental ophiolite association. An analysis of structure and history of the ocean crust formation in the region is based on all known geological information. The main periods of tectonic movement activation and nature of their manifestations within the sea are shown.
Resumo:
Bottom morphology of the Jan Mayen transform fracture zone and rock chemistry data show that petrological and chemical specific features of igneous rocks can result from higher permeability of the transform fracture zone and deeper penetration of ocean water into the lithosphere in comparison with rift zones of the Kolbeinsey and Mohn's mid-ocean ridges. Age of alkaline magmatism of the Jan Mayen fracture zone is similar to that of rift zones due to palingenesis of metamorphosed and hydrated mantle and crustal rocks.
Resumo:
Sulfur isotope ratios have been determined in 19 selected igneous rocks from Leg 126. The d34S of the analyzed rocks ranges from -0.1 â to +19.60 â. The overall variation in sulfur isotope composition of the rocks is caused by varying degrees of seawater alteration. Most of the samples are altered by seawater and only five of them are considered to have maintained their magmatic sulfur isotope composition. These samples are all from the backarc sites and have d34S values varying from +0.2 â to +1.6 â, of which the high d34S values suggest that the earliest magmas in the rift are more arc-like in their sulfur isotope composition than the later magmas. The d34S values from the forearc sites are similar to or heavier than the sulfur isotope composition of the present arc.