27 resultados para PHASE-CONTRAST MICROSCOPY
Spicule dimensions of Siphonodictyon cruzi Schönberg, in review; sample no. ZMA POR 05194 (holotype)
Resumo:
Composition of ore minerals in MAR sulflde occurrences related to ultramaflc rocks was studied using methods of mineragraphy, electron microscopy, microprobe analysis, and X-ray analysis. Objects are located at various levels of maturity of sulflde mounds owing to differences in age, duration and degree of activity of the following hydrothermal systems: generally inactive Logatchev-1 field (up to 66.5 ka old), inactive Logatchev-2 field (3.9 ka), and generally active Rainbow field (up to 23 ka). Relative to MAR submarine ore occurrences in the basalt substrate, mineralization in the hydrothermal fields mentioned above is characterized by high contents of Au, Cd, Co, and Ni, along with presence of accessory minerals of Co and Ni. The studied mounds differ in quantitative ratios of major minerals and structural-textural features of ores that suggest their transformation. Ores in the Logatchev-1 field are characterized by the highest Cu content and development of a wide range of multistage contrast exsolution structures of isocubanite and bornite. In the Logatchev-2 field, sphalerite-chalcopyrite and gold-arsenic exsolution structures are present, but isocubanite exsolution structures are less diverse and contrast. The Rainbow field is marked by presence of homogenous isocubanite and the subordinate development of exsolution structures. The authors have identified four new phases in the Cu-Fe-S system. Phases X and Y (close to chalcopyrite and isocubanite, respectively) make up lamellae among isocubanite exsolution products in the Logatchev-1 and Logatchev-2 fields. Phase Y includes homogenous zones in zonal chimneys of the Rainbow field. Phases A and B formed in the orange bornite domain at low-temperature alteration of chalcopyrite in the Logatchev-1 field. Mineral assemblages of the Cu-S system are most abundant and diverse in the Logatchev-1 field, but their development is minimal in the Logatchev-2 field where mainly Cu-poor sulfides of the geerite-covellite series have been identified. Specific features of mineral assemblages mentioned above reflect the maturity grade of sulfide mounds and can serve as indicators of maturity.
Resumo:
Equilibrium melting and controlled cooling experiments were undertaken to constrain the crystallization and cooling histories of tholeiitic basalts recovered by the Ocean Drilling Program drilling of Site 989 on the Southeast Greenland continental margin. Isothermal experiments conducted at 1 atm. and at the fayalite-magnetite-quartz buffer using lava sample Section 163-989B-10R-7 yielded the equilibrium appearance sequence with decreasing temperature: olivine at 1184 ± 2ºC; plagioclase at 1177ºC ± 5ºC; augite at 1167 ± 5ºC; and pigeonite at 1113 ± 12ºC. In controlled cooling experiments using the same starting composition and cooling rates between 10ºC/hr and 2000ºC/hr, we find a significant temperature delay in the crystallization of olivine, plagioclase, and augite (relative to the equilibrium appearance temperature); pigeonite does not form under any dynamic crystallization conditions. Olivine exhibits the largest suppression in appearance temperature (e.g., 30º for 10ºC/hr and >190º at 100ºC/hr), while plagioclase shows the smallest (~10ºC at 10ºC/hr; 30ºC at 100ºC/hr, and ~80ºC at 1000ºC/hr). These results are in marked contrast to those obtained on lunar basalts, which generally show a large suppression of plagioclase crystallization and modest suppression of olivine crystallization with an increased cooling rate. The results we report agree well with the petrography of lavas recovered from Site 989. Furthermore, the textural analysis of run products, representing a large range of cooling rates and quench temperatures (1150ºC to 1000ºC), provide a framework for evaluating cooling conditions necessary for glass formation, rates of plagioclase growth, and kinetic factors governing plagioclase growth morphology. Specifically, we use these insights to interpret the textural and mineralogical features of the unusual compound flow recovered at Site 989. We concluded from the analysis that this flow most likely records multiple breakouts from a distal tube at an abrupt break in slope, possibly a fault scarp, resulting in the formation of a lava fan delta. This interpretation implies that normal faulting of the oldest lava sequences (lower and, possibly, middle series) preceded eruption of Site 989 lavas.
Resumo:
This study focuses on the vertical distribution of authigenic carbonates (aragonite and high Mg-calcite) in the form of finely disseminated precipitates as well as massive carbonate concretions present in and above gas hydrate bearing sediments of the Northern Congo Fan. Analyses of Ca, Mg, Sr and Ba in pore water, bulk sediments and authigenic carbonates were carried out on gravity cores taken from three pockmark structures (Hydrate Hole, Black Hole and Worm Hole). In addition, a background core was retrieved from an area not influenced by fluid seepage. Pore water Sr/Ca and Mg/Ca ratios are used to reveal the current depths of carbonate formation as well as the mineralogy of the authigenic precipitates. The Sr/Ca and Mg/Ca ratios of bulk sediments and massive carbonate concretions were applied to infer the presence and depth distribution of authigenic aragonite and high Mg-calcite, based on the approach presented by Bayon et al. [Bayon et al. (2007). Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments. Marine Geology 241(1-4), 93-109, doi:10.1016/j.margeo.2007.03.007]. We show that the approach developed by Bayon et al. (2007) for sediments of cold seeps of the Niger Delta is also suitable to identify the mineralogy of authigenic carbonates in pockmark sediments of the Congo Deep-Sea Fan. We expand this approach by combining interstitial with solid phase Sr/Ca and Mg/Ca ratios, which demonstrate that high Mg-calcite is the predominant authigenic carbonate that currently forms at the sulfate/methane reaction zone (SMRZ). This is the first study which investigates both solid phase and pore water signatures typical for either aragonite or high Mg-calcite precipitation for the same sediment cores and thus is able to identify active and fossil carbonate precipitation events. At all investigated pockmark sites fossil horizons of the SMRZ were deduced from high Mg-calcite located above and below the current depths of the SMRZ. Additionally, aragonite enrichments typical for high seepage rates were detected close to the sediment surface at these sites. However, active precipitation of aragonite as indicated by pore water characteristics only occurs at the Black Hole site. Dissolved and solid phase Ba concentrations were used to estimate the time the SMRZ was fixed at the current depths of the diagenetic barite fronts. The combined pore water and solid phase elemental ratios (Mg/Ca, Sr/Ca) and Ba concentrations allow the reconstruction of past changes in methane seepage at the investigated pockmark sites. At the Hydrate Hole and Worm Hole sites the time of high methane seepage was estimated to have ceased at least 600 yr BP. In contrast, a more recent change from a high flux to a more dormant stage must have occurred at the Black Hole site as evidenced by active aragonite precipitation at the sediment surface and a lack of diagenetic Ba enrichments.
Resumo:
Magnetic properties of volcanic rocks are controlled mainly by the physical and chemical state of their constituent ferromagnetic minerals. The most important parameters determining magnetic properties are concentration, composition, grain size, and oxidation state. In sea floor basalts, the main ferromagnetic minerals are titanomagnetites which are either unoxidized or, more commonly, have undergone various degrees of posteruptive low-temperature oxidation to become cationdeficient titanomagnetites, or titanomaghemites. The effects of this low-temperature alteration are seen in the increase of Curie temperature and decrease of saturation magnetization and lattice parameter of ferromagnetic minerals (Readman and O'Reilly, 1972). It is now believed that titanomaghemitization of newly formed mid-ocean ridge crust proceeds with a time constant of about 1 m.y., accompanying drastic decrease of the intensity of the natural remanent magnetization (NRM) (Johnson and Atwater, 1977).
Resumo:
The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates "from above". As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to have persisted for a considerably longer time at the Worm Hole site, amounting to a few tens of thousands of years.