19 resultados para PARAMETERIZATION
Resumo:
Siberian boreal forests are expected to expand northwards in the course of global warming. However, processes of the treeline ecotone transition, as well astiming and related climate feedbacks are still not understood. Here, we present 'Larix Vegetation Simulator' LAVESI, an individual-based spatially-explicit model that can simulate Larix gmelinii (RUPR.) RUPR. stand dynamics in an attempt to improve our understanding about past and future treeline movements under changing climates. The relevant processes (growth, seed production and dispersal, establishment and mortality) are incorporated and adjusted to observation data mainly gained from the literature. Results of a local sensitivity analysis support the robustness of the model's parameterization by giving relatively small sensitivity values. We tested the model by simulating tree stands under modern climate across the whole Taymyr Peninsula, north-central Siberia (c. 64-80° N; 92-119° E). We find tree densities similar to observed forests in the northern to mid-treeline areas, but densities are overestimated in the southern parts of the simulated region. Finally, from a temperature-forcing experiment, we detect that the responses of tree stands lag the hypothetical warming by several decades, until the end of 21st century. With our simulation experiments we demonstrate that the newly-developed model captures the dynamics of the Siberian latitudinal treeline.
Resumo:
The mixing regime of the upper 180 m of a mesoscale eddy in the vicinity of the Antarctic Polar Front at 47° S and 21° E was investigated during the R.V. Polarstern cruise ANT-XVIII/2 within the scope of the iron fertilization experiment EisenEx. On the basis of hydrographic CTD and ADCP profiles we deduced the vertical diffusivity Kz from two different parameterizations. Since these parameterizations bear the character of empirical functions, based on theoretical and idealized assumptions, they were inter alia compared with Cox-number and Thorpe-scale related diffusivities deduced from microstructure measurements, which supplied the first direct insights into turbulence of this ocean region. Values of Kz in the range of 10**-4 - 10**-3 m**2/s appear as a rather robust estimate of vertical diffusivity within the seasonal pycnocline. Values in the mixed layer above are more variable in time and reach 10**-1 m**2/s during periods of strong winds. The results confirm a close agreement between the microstructure-based eddy diffusivities and eddy diffusivities calculated after the parameterization of Pacanowski and Philander [1981, Journal of Physical Oceanography 11, 1443-1451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2].
Resumo:
Sea ice models contain many different parameterizations of which one of the most commonly used is a subgrid-scale ice thickness distribution (ITD). The effect of this model component and the associated ice strength formulation on the reproduction of observed Arctic sea ice is assessed. To this end the model's performance in reproducing satellite observations of sea ice concentration, thickness and drift is evaluated. For an unbiased comparison, different model configurations with and without an ITD are tuned with an automated parameter optimization. The original combination of ITD and ice strength parameterization does not lead to better results than a simple single category model. Yet changing to a simpler ice strength formulation, which depends linearly on the mean ice thickness across all thickness categories, allows to clearly improve the model-data misfit when using an ITD. In the original formulation, the ice strength depends strongly on the number of thickness categories, so that introducing more categories can lead to thicker albeit weaker ice on average.
Resumo:
A high-resolution 222Radon (222Rn) flux map for Europe was developed, based on a parameterization of 222Rn production and transport in the soil. The 222Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. Monthly 222Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° x 0.083°. The two realizations of the 222Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222Rn flux from soils in Europe is estimated to be 10 mBq/m**2/s (ERA-Interim/Land soil moisture) or 15 mBq/m**2/s (GLDAS-Noah soil moisture) for the period 2006-2010. The 222Rn flux maps for Europe are available for the application in atmospheric transport studies, e.g to evaluate the performance of atmospheric transport models.