486 resultados para PALEOCLIMATOLOGY


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Greenland Ice Sheet Project 2 (GISP2) core can enhance our understanding of the relationship between parameters measured in the ice in central Greenland and variability in the ocean, atmosphere, and cryosphere of the North Atlantic Ocean and adjacent land masses. Seasonal (summer, winter) to annual responses of dD and deuterium excess isotopic signals in the GISP2 core to the seesaw in winter temperatures between West Greenland and northern Europe from A.D. 1840 to 1970 are investigated. This seesaw represents extreme modes of the North Atlantic Oscillation, which also influences sea surface temperatures (SSTs), atmospheric pressures, geostrophic wind strength, and sea ice extents beyond the winter season. Temperature excursions inferred from the dD record during seesaw/extreme NAO mode years move in the same direction as the West Greenland side of the seesaw. Symmetry with the West Greenland side of the seesaw suggests a possible mechanism for damping in the ice core record of the lowest decadal temperatures experienced in Europe from A.D. 1500 to 1700. Seasonal and annual deuterium excess excursions during seesaw years show negative correlation with dD. This suggests an isotopic response to a SST/ land temperature seesaw. The isotopic record from GISP2 may therefore give information on both ice sheet and sea surface temperature variability. Cross-plots of dD and d show a tendency for data to be grouped according to the prevailing mode of the seesaw, but do not provide unambiguous identification of individual seesaw years. A combination of ice core and tree ring data sets may allow more confident identification of GA and GB (extreme NAO mode) years prior to 1840.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in paleoclimate and paleoproductivity patterns have been identified by analysing, in conjunction with other available proxy data, the coccolithophore assemblages from core MD03-2699, located in the Portuguese margin in the time interval from the Marine Isotope Stage (MIS) 13/14 boundary to MIS 9 (535 to 300 ka). During the Mid-Brunhes event, the assemblages associated with the eccentricity minima are characterised by higher nannoplankton accumulation rate (NAR) values and by the blooming of the opportunistic genus Gephyrocapsa. Changes in coccolithophore abundance are also related to glacial-interglacial cycles. Higher NAR and numbers of coccoliths/g mainly occurred during the interglacial periods, while these values decreased during the glacial periods. Superimposed on the glacial/interglacial cycles, climatic and paleoceanographic variability has been observed on precessional timescales. The structure of the assemblages highlights the prevailing long-term influence of the Portugal (PC) and Iberian Poleward (IPC) Currents, following half and full precession harmonics, related to the migration of the Azores High (AH) Pressure System. Small Gephyrocapsa and Coccolithus pelagicus braarudii are regarded as good indicators for periods of prevailing PC influence. Gephyrocapsa caribbeanica, Syracosphaera spp., Rhabdosphaera spp. and Umbilicosphaera sibogae denote periods of IPC influence. Our data also highlights the increased percentages of Coccolithus pelagicus pelagicus during the occurrence of episodes of very cold and low salinity surface water, probably related to abrupt climatic events and millennial-scale oscillations of the AH/Icelandic Low (IL) System.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of oceanic and climatic conditions the northeast Indian Ocean during the last 7 m.y. is revealed in the sediments from Site 758. We present detailed and continuous records of d18O and d13C from planktonic foraminifers, weight percent calcium carbonate, weight percent coarse fraction, magnetic susceptibility, and geomagnetic reversals. Sample spacing of the records ranges from 3 to 10 cm and is equivalent to an average time interval of 2000 to 6000 yr. Despite the fact that core recovery ranged between 100% and 105%, recovery gaps as large as 2.7 m occurred at nearly every break between advanced hydraulic piston cores. Approximately 12% of the late Neogene sequence was not recovered in each of the two holes drilled at Site 758. To circumvent the discontinuity introduced by the gaps, a composite depth section was constructed from multiple cores taken from offset holes at Site 758. The resulting composite depth section extends continuously from 0 to 116 mbsf, from the Holocene to the upper Miocene. A detailed chronostratigraphy is based on geomagnetic reversals which extend from the Brunhes Chron to Chron 6, and on d18O stages 1 through 105, which span from 0 to 2.5 Ma. The d18O record is dominated by a ~40-k.y. cycle in the late Pliocene and early Pleistocene, and is followed by a change to a ~100-k.y. cycle in the late Pleistocene. The mid-Pleistocene transition between these two modes of variability occurs between d18O stages 25 and 22 (between 860 and 800 Ka). Thirteen major volcanic ash horizons from the Indonesian arc are observed throughout the sedimentary section and are dated by their relative position within the geomagnetic reversals and the d18O chronostratigraphy. Since 5 Ma, there has been a long-term decline in weight percent CaCO3 and CaCO3 mass accumulation rates, and an associated rise in non-CaCO3 mass accumulation rates. We attribute these changes to a decrease in CaCO3 productivity and an increase in terrigenous sedimentation through enhanced riverine input. Such input may be linked to rapid tectonic uplift of the Himalayas and the Tibetan Plateau via mechanisms such as the intensification of the monsoonal rains, increased fluvial erosion, and regional glaciation. The long-term increase in percent coarse fraction since 5 Ma suggests a gradual increase in CaCO3 preservation. Higher frequency fluctuations in CaCO3 preservation are superimposed on the long-term trend and are related to climate fluctuations. The abrupt drop (-50%) in CaCO3 accumulation at 3.4 Ma signals a dramatic decrease in CaCO3 production that occurred over much of the Indian Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We here present a synchronization of the NGRIP, GRIP, and GISP2 ice cores based mainly on volcanic events over the period 14.9-32.45 ka b2k (before AD 2000), corresponding to Marine Isotope Stage 2 (MIS 2) and the end of MIS 3. The matching provides a basis for applying the recent NGRIP-based Greenland Ice Core Chronology 2005 (GICC05) time scale to the GRIP and GISP2 ice cores, thereby making it possible to compare the synchronized palaeoclimate profiles of the cores in detail and to identify relative accumulation differences between the cores. Based on the matching, a period of anomalous high accumulation rates in the GISP2 ice core is detected within the period 16.5-18.3 ka b2k. The d18O and [Ca2+] profiles of the three cores are presented on the common GICC05 time scale and generally show excellent agreement across the stadial-interstadial transitions and across the two characteristic dust events in Greenland Stadial 3. However, large differences between the d18O and [Ca2+] profiles of the three cores are seen in the same period as the 7-9% increase in the GISP2 accumulation rate. We conclude that changes of the atmospheric circulation are likely to have occurred in this period, altering the spatial gradients in Greenland and resulting in larger variations between the records.