161 resultados para Oxidizing Bacteria


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dark, organic-rich sediments were recovered from the lower Miocene section (~16.6 Ma) in Hole 985A in the Norway Basin during Ocean Drilling Program Leg 162. Organic carbon and total sulfur contents of the dark sediments showed a maximum concentration of 5.6 and 26.1 wt%, respectively. Sulfur enrichment in the sediments indicates that these dark layers were formed under anoxic conditions in bottom water. Four dark and eight greenish gray sediment samples, ranging in age from early Miocene to Pleistocene, were analyzed for lipid-class compounds (aliphatic hydrocarbons, fatty alcohols, and sterols) using gas chromatography (GC) and GC/mass spectrometry to better understand the formation processes of the organic-rich dark layers and to reconstruct the paleoenvironmental changes. The molecular distributions of n-alkanes and fatty alcohols indicate that terrigenous organic matter largely contributed to both types of sediments. Significant amounts of hopanoid hydrocarbons, such as diploptene and hop-17(21)-ene, however, were detected characteristically in the dark sediments, which suggests that prokaryotes such as methane-oxidizing bacteria or cyanobacteria may have significantly contributed to the formation of these organic-rich, dark sediments. These results indicate that the bottom waters of the Norway Basin had been subjected to anoxic conditions during the early Miocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Logatchev hydrothermal vent field (14°45'N, Mid-Atlantic Ridge) is located in a ridge segment characterized by mantle-derived ultramafic outcrops. Compared to basalt-hosted vents, Logatchev high temperature fluids are relatively low in sulfide indicating that the diffuse, low temperature fluids of this vent field may not contain sufficient sulfide concentrations to support a chemosymbiotic invertebrate community. However, the high abundances of bathymodiolin mussels with bacterial symbionts related to free-living sulfur oxidizing bacteria suggested that bioavailable sulfide is present at Logatchev. To clarify if diffuse fluids above mussel beds of Bathymodiolus puteoserpentis provide the reductants and oxidants needed by their symbionts for aerobic sulfide oxidation, in situ microsensor measurements of dissolved hydrogen sulfide and oxygen were combined with simultaneous temperature measurements. High temporal fluctuations of all three parameters were measured above the mussel beds. H2S and O2 co-existed with mean concentrations between 9-31 µM (H2S) and 216-228 µM (O2). Temperature maxima (<= 7.4°C) were generally concurrent with H2S maxima (<= 156 µM) and O2 minima (>= 142 µM). Long-term measurements for 250 days using temperature as a proxy for oxygen and sulfide concentrations indicated that the mussels were neither oxygen- nor sulfide-limited. Our in situ measurements at Logatchev indicate that sulfide may also be bioavailable in diffuse fluids from other ultramafic-hosted vents along slow- and ultraslow-spreading ridges.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production**1, 2. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits**3, 4. Bacteria are thought to mediate these processes**5, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change**6, potentially increasing sequestration of marine phosphate, and restricting marine productivity.