58 resultados para Optically stimulated luminescence(OSL)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents-Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80-100 ka, with a mean of 88 +/- 3 ka. This implies that that the Barents-Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei-Harmon-Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents-Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new site with Lateglacial palaeosols covered by 0.8 - 2.4 m thick aeolian sands is presented. The buried soils were subjected to multidisciplinary analyses (pedology, micromorphology, geochronology, dendrology, palynology, macrofossils). The buried soil cover comprises a catena from relatively dry ('Nano'-Podzol, Arenosol) via moist (Histic Gleysol, Gleysol) to wet conditions (Histosol). Dry soils are similar to the so-called Usselo soil, as described from sites in NW Europe and central Poland. The buried soil surface covers ca. 3.4 km**2. Pollen analyses date this surface into the late Aller0d. Due to a possible contamination by younger carbon, radiocarbon dates are too young. OSL dates indicate that the covering by aeolian sands most probably occurred during the Younger Dryas. Botanical analyses enables the reconstruction of a vegetation pattern typical for the late Allerod. Large wooden remains of pine and birch were recorded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In agreement with the Milankovitch orbital forcing hypothesis (Imbrie et al., 1993) it is often assumed that glacial-interglacial climate transitions occurred synchronously in the Northern and Southern hemispheres of the Earth. It is difficult to test this assumption, because of the paucity of long, continuous climate records from the Southern Hemisphere that have not been dated by tuning them to the presumed Northern Hemisphere signals (Lynch-Stieglitz, 2004). Here we present an independently dated terrestrial pollen record from a peat bog on South Island, New Zealand, to investigate global and local factors in Southern Hemisphere climate changes during the last two glacial-interglacial cycles. Our record largely corroborates the Milankovitch model of orbital forcing but also exhibits some differences: in particular, an earlier onset and longer duration of the Last Glacial Maximum. Our results suggest that Southern Hemisphere insolation may have been responsible for these differences in timing. Our findings question the validity of applying orbital tuning to Southern Hemisphere records and suggest an alternative mechanism to the bipolar seesaw for generating interhemispheric asynchrony in climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy mineral composition, grain size characteristics, organic carbon content) and age determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary units of the three major geomorphic terraces, which form the delta. The development of the terraces is controlled by complex interactions among the following four factors: (1) Channel migration. According to the distribution of 14C and IR-OSL age determinations of Lena mouth sediments, the major river runoff direction shifted from the west during marine isotope stages 5-3 (third terrace deposits) towards the northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea level rise from Last Glacial lowstand to the modern sea level position, reached at 6-5 ka BP, resulted in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea shelf acted as a halfgraben, showing dilatation movements with different subsidence rates. From the continent side, differential neotectonics with uplift and transpression in the Siberian coast ridges are active. Both likely have influenced river behavior by providing sites for preservation, with uplift, in particular, allowing accumulation of deposits in the second terrace in the western sector. The actual delta setting comprises only the eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty sand (''Ice Complex'') was most extensive (7-11 m in thickness) in the southern part of the delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat (5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector (first terrace).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The timing of the most recent Neoglacial advance in the Antarctic Peninsula is important for establishing global climate teleconnections and providing important post-glacial rebound corrections to gravity-based satellite measurements of ice loss. However, obtaining accurate ages from terrestrial geomorphic and sedimentary indicators of the most recent Neoglacial advance in Antarctica has been hampered by the lack of historical records and the difficulty of dating materials in Antarctica. Here we use a new approach to dating flights of raised beaches in the South Shetland Islands of the northern Antarctic Peninsula to bracket the age of a Neoglacial advance that occurred between 1500 and 1700 AD, broadly synchronous with compilations for the timing of the Little Ice Age in the northern hemisphere. Our approach is based on optically stimulated luminescence of the underside of buried cobbles to obtain the age of beaches previously shown to have been deposited immediately inside and outside the moraines of the most recent Neoglacial advance. In addition, these beaches mark the timing of an apparent change in the rate of isostatic rebound thought to be in response to the same glacial advance within the South Shetland Islands. We use a Maxwell viscoelastic model of glacial-isostatic adjustment (GIA) to determine whether the rates of uplift calculated from the raised beaches are realistic given the limited constraints on the ice advance during this most recent Neoglacial advance. Our rebound model suggests that the subsequent melting of an additional 16-22% increase in the volume of ice within the South Shetland Islands would result in a subsequent uplift rate of 12.5 mm/yr that lasted until 1840 AD resulting in a cumulative uplift of 2.5 m. This uplift rate and magnitude are in close agreement with observed rates and magnitudes calculated from the raised beaches since the most recent Neoglacial advance along the South Shetland Islands and falls within the range of uplift rates from similar settings such as Alaska.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The German-Russian project CARBOPERM - Carbon in Permafrost, origin, quality, quantity, and degradation and microbial turnover - is devoted to studying soil organic matter history, degradation and turnover in coastal lowlands of Northern Siberia. The multidisciplinary project combines research from various German and Russian institutions and runs from 2013 to 2016. The project aims assessing the recent and the ancient trace gas budget over tundra soils in northern Siberia. Studied field sites are placed in the permafrost of the Lena Delta and on Bol'shoy Lyakhovsky, the southernmost island of the New Siberian Archipelago in the eastern Laptev Sea. Field campaigns to Bol'shoy Lyakhovsky in 2014 (chapter 2) were motivated by research on palaeoenvironmental and palaeoclimate reconstruction, sediment dating, near surface geophysics and microbiological research. In particular the field campaigns focussed on: - coring Quaternary strata with a ages back to ~200.000 years ago as found along the southern coast; they allow tracing microbial communities and organic tracers (i.e. lipids and biomarkers, sedimentary DNA) in the deposits across two climatic cycles (chapter 3), - instrumenting a borehole with a thermistor chain for measuring permafrost temperatures (chapter 3), - sampling Quaternary strata for dating permafrost formation periods based on the optical stimulated luminescence (OSL) technique (chapter 4), - sampling soil and geologic formations for carbon content in order to highlight potential release of CO2 and methane based on incubation experiments (chapter 5), - profiling near surface permafrost using ground-penetrating radar and geoelectrics for defining the spatial depositional context, where the cores are located (chapters 6 + 7).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The age correlation between the three main geomorphological terraces in the Lena Delta, especially that of the second sandy terrace (Arga Island) and the third terrace (Ice Complex and underlying sands) is still being discussed, Knowledge about the age of the lee Complex and its underlying sands, and the Arga sands is necessary for understanding the past and modern structure of the delta. Geochronometrie data have been acguired for three sediment seguences from the Lena Delta by lumineseence dating using the potassium feldspar IR-OSL technique. Additionally, 14C dates are available for geochronological discussion. Typical sediments of the upper part of Arga Island as found in the area of Lake Nikolay are of Late Pleistoeene age (14.5-10.9 ka), Typical third terrace sediments from two seguenees located at the Olenyokskaya branch are older. At the profile "Nagym" sandy seguences were most probably deposited between about 65 ka and 50 ka before present. The lower part of the sandy seguence at "Kurungnakh Island" is possibly older than the sediments of the section at Nagym. However, methodological difficulties in luminescence dating (insufficient bleaching at the time of deposition) and younger 14C dates make the discussion of the results difficult.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of pedogeomorphological, geochronological and paleobotanical investigations are presented covering the last ca. 4,000 years. The study sites are located in the heavily degraded Kyichu River catchment around Lhasa at 3,600-4,600 m a.s.l. Repeatedly, colluvial sediments have been recorded overlying paleosols. These deposits can be divided into i) coarse-grained sediments with a high proportion of stones and boulders originating from alluvial fans and debris flows, ii) matrix supported sediments with some stones and boulders originating from mudflows or combined colluvial processes such as hillwash plus rock fall, and iii) fine-grained sediments originating from hill wash. The IRSL multi-level dating of profile QUG 1 points to a short-time colluvial sedimentation between 1.0 ± 0.1 and 0.8 ± 0.1 ka. In contrast, dated paleosols of profile GAR 1 (7,908 ± 99 and 3,668 ± 57 BP) encompass a first colluvial episode. Here, the upper colluvial sedimentation took place during several periods between 2.6 ± 0.3 and 0.4 ± 0.1 ka. For the first time in Tibet, a systematic extraction, determination and dating of charcoals from buried paleosols was conducted. The charcoals confirm the Late Holocene presence of juniper forests or woodlands in a now treeless, barren environment. A pollen diagram from Lhasa shows a distinct decline of pollen of the Jumperus-type around 4,140 ± 50 BP, which is interpreted as indicating a clearing of forests on the adjacent slopes. It is assumed that the environmental changes from forests to desertic rangelands since ca. 4,000 BP have been at least reinforced by humans.