311 resultados para Oman Ophiolite
Resumo:
A collection of dredge samples from the Hunter Fracture Zone includes holocrystalline massive and cumulose basic and ultrabasic rocks and volcanites of the ophiolite complex: from basalts to rhyolites. The ultrabasic rocks are largely serpentinized harzburgites and lherzolites; their relict mineralogy is typical of peridotite considered to be the refractory residue of partial melting of the mantle. Cumulate textured ultramafic rocks probably are related to the cumulate gabbro and granodiorite rather than to the residual mantle material. The gabbroic rocks are dominantly cumulate textured Pl-Opx-Cpx±Ol gabbronorite and Pl-Cpx±Ol gabbros; the mineral features of these rocks are the result of their crystallization at moderate pressure (in a moderate level magma chamber). The massive Pl-Cpx±Ol gabbros are less common. Green and brown-green Ca-amphibole has partially or totally replaced the clinopyroxene in many samples. There is an overlap in mineral chemistry between the cumulate rocks and the Opx-Cpx-Pl volcanic rocks and boninites. It is interpreted as an indication that the cumulate rocks were co-genetic with Opx-Cpx-Pl volcanic rocks and that they both constitute remnants of an island arc volcanic-plutonic series. The petrologic evidence indicates that ophiolite gabbroic rocks were derived from an island-arc rather than from a mid-ocean ridge.
Resumo:
Petrographical and geochemical studies of Neogene marine sediments from the Oman Sea (Leg 117, Sites 720, 724, 726 and 730), show a close relationship between the nature and amount of the organic matter, and the degree of degradation of organic matter by sulfate reduction, i.e. pyritization. Petrographically, three major pyritization types were observed: (1) Finely dispersed pyrite framboids in sediments from Oman Margin and Indus Fan, enriched in autochthonous marine organic matter. (2) Infilling of pores by massive pyrite crystals in Oman Margin sediments with a low TOC and a high microfossil content. (3) Pyrite mineralization of lignaceous fragments in organic-depleted sediments from the Indus Fan leading to more massive pyrite. Geochemically, we can define a sulfate reduction index (SRI) as the percentage of initial organic carbon versus that of residual organic carbon. Finely laminated Pliocene-Pleistocene sediments from the Oman Margin exclusively contain organic matter deriving from organic phytoplankton, for which the quantity (TOC) positively correlates with the geochemical quality (Hydrogen Index). We think that the occurrence of this residual organic matter is linked mainly to a high primary paleo-productivity. The intensity of sulfate reduction is constant for sediments with TOC up to 2% and becomes more important when organic input decreases. This degradation process can destroy up to 50% of the initial organic matter, but is not sufficient to explain some of the encountered very low TOC values. It can be seen that sharp increases of certain plankton species (with mineral skeletons) are responsible for a pronounced degradation of organic matter, due to increased sulfate reduction. In that case, the organic matter may be strongly degraded (high SRI), although deposited in an oxygen-depleted environment. Conversely, Miocene-Pliocene sediments contain an autochthonous organic matter that is typical of both low productivity and oxic processes; their very low sulfate reduction index indicates that very little metabolizable organic matter was initially present.
(Table 1c) Microprobe analyses of troctolites from the ophiolite complex in the Hunter Fracture Zone
Resumo:
In the northwest Arabian Sea upwelling occurs each summer, driven by the strong SW monsoon winds. Upwelling results in high biological productivity and a distinctive assemblage of plankton species in the surface waters off Oman that are preserved in the sediments along the Oman continental margin, creating a geologic record of monsoon-driven upwelling. Sediments recovered from the Oman continental margin during Ocean Drilling Program leg 117 provide an opportunity to examine how upwelling has varied during the late Quaternary, spanning a longer interval than piston cores recovered prior to the ODP cruise. Variations in foraminifer shell accumulation and in the relative abundance of Globigerina bulloides indicate dominant cycles of variation at 1/100 kyr, the dominant frequency of glacial-interglacial variations, and at 1/23 kyr, the frequency of precessionally driven cycles in seasonal insolation. The strongest monsoon winds (indicated by increased upwelling) occurred during interglacial times when perihelion was aligned with the summer solstice, an orbital change that increased the insolation received during summer in the northern hemisphere. During glacial times upwelling was reduced, and although the precessional cycles were still present their amplitude was smaller. At both frequencies the upwelling cycles are in phase with minimum ice volume, evidence that glacial-interglacial climate changes also include changes to the climate system that influence the low-latitude monsoon. We attribute the decrease in the monsoon winds observed during glacial times to changes in bare land albedo over Asia and/or to changes in the areal extent and seasonal cycle in Asian snow cover that decrease the summer land-sea temperature contrast. Other mechanisms may also be involved. These new upwelling time series differ substantially from previous results, however the previous work relied on cores located farther offshore where upwelling is less intense and other physical mechanisms become important. Our results support the observations derived from atmospheric general circulation models of the atmosphere that indicate that both glacial boundary conditions, and the strength of summer insolation are important variables contributing to cycles in the monsoon winds during the late Quaternary.