18 resultados para Occupy
Resumo:
The d18O values of interstitial waters from Site 994 and Site 997 sediments, Blake Ridge, western Atlantic, tend to decrease with depth from 0.3 per mil to -0.5 per mil Standard Mean Ocean Water in the upper 200 mbsf, then fluctuate with significant positive spikes of Delta = 0.2 per mil - 0.5 per mil in the gas hydrate zone (200 to 450 mbsf), and finally increase from -0.4 per mil to -0.2 per mil toward 700 mbsf. Positive shifts of d18O IW in the gas hydrate zone are probably caused by the dissociation of gas hydrates originally contained in sediment cores. Gas hydrates recovered from the sites are enriched in 18O, d18O ranging between 2.7 per mil and 3.5 per mil. d18O values of gas hydrates and ambient interstitial waters give an oxygen isotopic fractionation factor of 1.0034-1.0040 at 12°-16°C and ~31 MPa (3 km below sea level). Based on this fractionation and observed isotopic anomalies in the gas hydrate zone, gas hydrates occupy 6% to 12% of pore-space volume within Blake Ridge sediments.
Resumo:
In the context of the European OMEX Programme this investigation focused on gradients in the biomass and activity of the small benthic size spectrum along a transect across the Goban Spur from the outer Celtic Sea into Porcupine Abyssal Plain. The effects of food pulses (seasonal, episodic) on this part of the benthic size spectrum were investigated. Sediments sampled during eight expeditions at different seasons covering a range from 200 m to 4800 m water depth were assayed with biochemical bulk measurements: determinations of chloroplastic pigment equivalents (CPE), the sum of chlorophyll a and its breakdown products, provide information concerning the input of phytodetrital matter to the seafloor; phospholipids were analyzed to estimate the total biomass of small benthic organisms (including bacteria, fungi, flagellata, protozoa and small metazoan meiofauna). A new term 'small size class biomass' (SSCB) is introduced for the biomass of the smallest size classes of sediment-inhabiting organisms; the reduction of fluorescein-di-acetate (FDA) was determined to evaluate the potential activity of ester-cleaving bacterial exoenzymes in the sediment samples. At all stations benthic biomass was predominantly composed of the small size spectrum (90% on the shelf; 97-98% in the bathyal and abyssal parts of the transect). Small size class biomass (integrated over a 10 cm sediment column) ranged from 8 g C/m**2 on the shelf to 2.1 g C/m**2 on the adjacent Porcupine Abyssal Plain, exponentially decreasing with increasing water depth. However, a correlation between water depth and SSCB, macrofauna biomass as well as metazoan meiofauna biomass exhibited a significantly flatter slope for the small size classes in comparison to the larger organisms. CPE values indicated a pronounced seasonal cycle on the shelf and upper slope with twin peaks of phytodetrital deposition in mid spring and late summer. The deeper stations seem to receive a single annual flux maximum in late summer. SSCB and heterotrophic activity are significantly correlated to the amount of sediment-bound pigments. Seasonality in pigment concentrations is clearly followed by SSCB and activity. In contrast to macro- and megafauna which integrate over larger periods (months/years), the small benthic size classes, namely bacteria and foraminifera, proved to be the most reactive potential of the benthic communities to any perturbations on short time scales (days/weeks). The small size classes, therefore, occupy a key role in early diagenetic processes.
Resumo:
Stable d13C and d15N isotopes, diet and parasites demonstrated that the prey consumed by ninespine stickleback Pungitius pungitius in a small lake on Baffin Island changed during the summer and also revealed intraspecific variation in their ecological niche. In July, there were differences in the diets of male and female ninespine stickleback as indicated by the stable isotopes, differences corroborated by the data on diet composition and the parasite fauna. Differences suggested that the sexes occupied different habitats during spawning. During July, females utilise the shallower littoral areas consuming zooplankton and benthic organisms, while males occupy deeper areas of the littoral zone feeding mainly on pelagic zooplankton. Parasite data support these observations as males had higher infections of copepod-transmitted parasites than females. There appeared to be no segregation of resources between males and females in late August, although the diet of both male and female ninespine stickleback shifted towards more benthic organisms, compared with July. Differences in d13C isotope, diet composition and infections of co-occurring parasites demonstrated that sympatric ninespine stickleback and Arctic char Salvelinus alpinus captured in the littoral zone occupied separate niches. Ninespine stickleback preyed mainly on zooplankton and chironomids, while Arctic char consumed a greater variety of prey items, including zooplankton and larger-sized prey such as insects and ninespine stickleback. The multifaceted approach improved our understanding of the trophic ecology of ninespine stickleback in southern Baffin Island and quantified resource use and dietary overlap with Arctic char.