66 resultados para OROGENIC BELTS
Resumo:
Neptunian dikes and cavities as weil as their fillings are described from Middle to Upper Devonian carbonates of the Warstein area. The genesis of the pre-Upper Carboniferous dikes is due to pre-orogenic synsedimentary tensional movements. Lifting, subsidence and tilting caused joints and cracks, which are enlarged to dikes and cavities on submarine conditions. The post-Upper Carboniferous dikes are based on the orogenesis during Upper Carboniferous time, causing numerous tectonical divisional planes in the sediments. Along these planes a far-reaching karstification took place since mesozoic time. According to their size the cavities are subdivided into macro-, mega- and microdikes. With the exception of one macrodike all the others are limited to the massive limestone. Megadikes especially occur in Upper Devonian cephalopod limestone and in the Erdbach limestone, microdikes can be found in all carbonatic rocks. The dikes follow pre-orogenic, tectonical and sedimentary divisional planes and are orientated to ac-, bc- as well as bedding planes and diagonal directions. The fillings happened down from above either in a solitary event or repeatedly in long-lived dikes during a span of several ten millions of years. More seldom the fillings took place laterally or upside from beneath. The dikes contain - without regard to autochthonous conodont faunas - older and/or younger mixed faunas, too. Occasionally they were used as life district by a trilobite fauna adapted to the dikes. The dikes represent sedimentary pitfalls and conserve sediments eroded in other places. Therefore, by aid of the fillings, it can be demonstrated, that stratigraphic gaps are not absolutely due to primary interruptions of sedimentation, but were caused by reworking. Some dikes contain the distal offsets of slides and suspension streams. Relations between condensation and development of dikes could not be derived in the Warstein area. However, an increase of the frequency of dikes towards east to the eastern margin of the Warstein carbonate platform could be pointed out. This margin is a slope, persisting more than 10 millions of years, between a block and a basin. Evidently cracks and dikes, which were caused by settlements, slides and earth quakes, occured there frequently. The Warstein dikes and cavities, caused by karstification, are filled with terrestrial Lower Cretaceous, marine Upper Cretaceous and terrestrial Pleistocene to Holocene sediments. Tertiary sediments could not be detected.
Resumo:
In central Antarctica, drainage today and earlier back to the Paleozoic radiates from the Gamburtsev Subglacial Mountains (GSM). Proximal to the GSM past the Permian-Triassic fluvial sandstones in the Prince Charles Mountains (PCM) are Cretaceous, Eocene, and Pleistocene sediment in Prydz Bay (ODP741, 1166, and 1167) and pre-Holocene sediment in AM04 beneath the Amery Ice Shelf. We analysed detrital zircons for U-Pb ages, Hf-isotope compositions, and trace elements to determine the age, rock type, source of the host magma, and "crustal" model age (T(C)DM). These samples, together with others downslope from the GSM and the Vostok Subglacial Highlands (VSH), define major clusters of detrital zircons interpreted as coming from (1) 700 to 460 Ma mafic granitoids and alkaline rock, epsilon-Hf 9 to -28, signifying derivation 2.5 to 1.3 Ga from fertile and recycled crust, and (2) 1200-900 Ma mafic granitoids and alkaline rock, epsilon-Hf 11 to -28, signifying derivation 1.8 to 1.3 Ga from fertile and recycled crust. Minor clusters extend to 3350 Ma. Similar detrital zircons in Permian-Triassic, Ordovician, Cambrian, and Neoproterozoic sandstones located along the PaleoPacific margin of East Antarctica and southeast Australia further downslope from central Antarctica reflect the upslope GSM-VSH nucleus of the central Antarctic provenance as a complex of 1200-900 Ma (Grenville) mafic granitoids and alkaline rocks and older rocks embedded in 700-460 Ma (Pan-Gondwanaland) fold belts. The wider central Antarctic provenance (CAP) is tentatively divided into a central sector with negative ?Hf in its 1200-900 Ma rocks bounded on either side by positive epsilon-Hf. The high ground of the GSM-VSH in the Permian and later to the present day is attributed to crustal shortening by far-field stress during the 320 Ma mid-Carboniferous collision of Gondwanaland and Laurussia. Earlier uplifts in the ~500 Ma Cambrian possibly followed the 700-500 Ma assembly of Gondwanaland, and in the Neoproterozoic the 1000-900 Ma collisional events in the Eastern Ghats-Rayner Province at the end of the 1300-1000 Ma assembly of Rodinia.
Resumo:
Extensive high-grade polydeformed metamorphic provinces surrounding Archaean cratonic nuclei in the East Antarctic Shield record two tectono-thermal episodes in late Mesoproterozoic and late Neoproterozoic-Cambrian times. In Western Dronning Maud Land, the high-grade Mesoproterozoic Maud Belt is juxtaposed against the Archaean Grunehogna Province and has traditionally been interpreted as a Grenvillian mobile belt that was thermally overprinted during the Early Palaeozoic. Integration of new U-Pb sensitive high-resolution ion microprobe and conventional single zircon and monazite age data, and Ar-Ar data on hornblende and biotite, with thermobarometric calculations on rocks from the H.U. Sverdrupfjella, northern Maud Belt, resulted in a more complex P-T-t evolution than previously assumed. A c. 540?Ma monazite, hosted by an upper ampibolite-facies mineral assemblage defining a regionally dominant top-to-NW shear fabric, provides strong evidence for the penetrative deformation in the area being of Pan-African age and not of Grenvillian age as previously reported. Relics of an eclogite-facies garnet-omphacite assemblage within strain-protected mafic boudins indicate that the peak metamorphic conditions recorded by most rocks in the area (T = 687-758°C, P = 9·4-11·3?kbar) were attained subsequent to decompression from P > 12·9?kbar. By analogy with limited U-Pb single zircon age data and on circumstantial textural grounds, this earlier eclogite-facies metamorphism is ascribed to subduction and accretion around 565?Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions is ascribed to the intrusion of post-orogenic granite at c. 480?Ma. The recognition of extensive Pan-African tectonism in the Maud Belt casts doubts on previous Rodinia reconstructions, in which this belt takes a pivotal position between East Antarctica, the Kalahari Craton and Laurentia. Evidence of late Mesoproterozoic high-grade metamorphism during the formation of the Maud Belt exists in the form of c. 1035?Ma zircon overgrowths that are probably related to relics of granulite-facies metamorphism recorded from other parts of the Maud Belt. The polymetamorphic rocks are largely derived from a c. 1140?Ma volcanic arc and 1072 ± 10?Ma granite.
Resumo:
Three distinct, spatially separated crustal terranes have been recognised in the Shackleton Range, East Antarctica: the Southern, Eastern and Northern Terranes. Mafic gneisses from the Southern Terrane provide geochemical evidence for a within-plate, probably back-arc origin of their protoliths. A plume-distal ridge origin in an incipient ocean basin is the favoured interpretation for the emplacement site of these rocks at c. 1850 Ma, which, together with a few ocean island basalts, were subsequently incorporated into an accretionary continental arc/supra-subduction zone tectonic setting. Magmatic underplating resulted in partial melting of the lower crust, which caused high-temperature granulite-facies metamorphism in the Southern Terrane at c. 1710-1680 Ma. Mafic and felsic gneisses there are characterised by isotopically depleted, positive Nd and Hf initials and model ages between 2100 and 2000 Ma. They may be explained as juvenile additions to the crust towards the end of the Palaeoproterozoic. These juvenile rocks occur in a narrow, c. 150 km long E-W trending belt, inferred to trace a suture that is associated with a large Palaeoproterozoic accretionary orogenic system. The Southern Terrane contains many features that are similar to the Australo-Antarctic Mawson Continent and may be its furthermost extension into East Antarctica. The Eastern Terrane is characterised by metagranitoids that formed in a continental volcanic arc setting during a late Mesoproterozoic orogeny at c. 1060 Ma. Subsequently, the rocks experienced high-temperature metamorphism during Pan-African collisional tectonics at 600 Ma. Isotopically depleted zircon grains yielded Hf model ages of 1600-1400 Ma, which are identical to Nd model ages obtained from juvenile metagranitoids. Most likely, these rocks trace the suture related to the amalgamation of the Indo-Antarctic and West Gondwana continental blocks at ~600 Ma. The Eastern Terrane is interpreted as the southernmost extension of the Pan-African Mozambique/Maud Belt in East Antarctica and, based on Hf isotope data, may also represent a link to the Ellsworth-Whitmore Mountains block in West Antarctica and the Namaqua-Natal Province of southern Africa. Geochemical evidence indicates that the majority of the protoliths of the mafic gneisses in the Northern Terrane formed as oceanic island basalts in a within-plate setting. Subsequently the rocks were incorporated into a subduction zone environment and, finally, accreted to a continental margin during Pan-African collisional tectonics. Felsic gneisses there provide evidence for a within-plate and volcanic arc/collisional origin. Emplacement of granitoids occurred at c. 530 Ma and high-temperature, high-pressure metamorphism took place at 510-500 Ma. Enriched Hf and Nd initials and Palaeoproterozoic model ages for most samples indicate that no juvenile material was added to the crust of the Northern Terrane during the Pan-African Orogeny but recycling of older crust or mixing of crustal components of different age must have occurred. Isotopically depleted mafic gneisses, which are spatially associated with eclogite-facies pyroxenites, yielded late Mesoproterozoic Nd model ages. These rocks occur in a narrow, at least 100 km long, E-W trending belt that separates alkaline ocean island metabasalts and within-plate metagranitoids from volcanic arc metabasalts and volcanic arc/syn-collisional metagranitoids in the Northern Terrane. This belt is interpreted to trace the late Neoproterozoic/early Cambrian Pan-African collisional suture between the Australo-Antarctic and the combined Indo-Antarctic/West Gondwana continental blocks that formed during the final amalgamation of Gondwana.
Resumo:
The evolution of pore fluids migrating through the forearc basins, continental massif, and accretionary prism of the Peru margin is recorded in the sequence of carbonate cements filling intergranular and fracture porosities. Petrographic, mineralogic, and isotopic analyses were obtained from cemented clastic sediments and tectonic breccias recovered during Leg 112 drilling. Microbial decomposition of the organic-rich upwelling facies occurs during early marine diagenesis, initially by sulfate-reduction mechanisms in the shallow subsurface, succeeded by carbonate reduction at depth. Microcrystalline, authigenic cements formed in the sulfate-reduction zone are 13C-depleted (to -20.1 per mil PDB), and those formed in the carbonate-reduction zone are 13C-enriched (to +19.0 per mil PDB). Calcium-rich dolomites and near-stoichiometric dolomites having uniformly heavy d18O values (+2.7 to +6.6 per mil PDB) are typical organic decomposition products. Quaternary marine dolomites from continental-shelf environments exhibit the strongest sulfate-reduction signatures, suggesting that Pleistocene sea-level fluctuations created a more oxygenated water column, caused periodic winnowing of the sediment floor, and expanded the subsurface penetration of marine sulfate. We have tentatively identified four exotic cement types precipitated from advected fluids and derived from the following diagenetic environments: (1) meteoric recharge, (2) basalt alteration, (3) seafloor venting and (4) hypersaline concentration. Coarsely crystalline, low-magnesium (Lo-Mg) calcite cements having pendant and blocky-spar morphologies, extremely negative d18O values (to -7.5 per mil PDB), and intermediate d13C values (-0.4 per mil to +4.6 per mil PDB) are found in shallow-marine Eocene strata. These cements are evidently products of meteoric diagenesis following subaerial emergence during late Eocene orogenic movements, although the strata have since subsided to greater than 4,000 m below sea level. Lo-Mg calcite cements filling scaly fabrics in the late Miocene accretionary prism sediments are apparently derived from fluids having lowered magnesium/calcium (Mg/Ca) and 18O/16O ratios; such fluids may have reacted with the subducting oceanic crust and ascended through the forearc along shallow-dipping thrust faults. Micritic, high-magnesium (Hi-Mg) calcite cements having extremely depleted d13C values (to -37.3%c PDB), and a benthic fauna of giant clams (Calyptogena sp.) supported by a symbiotic, chemoautotrophic metabolism, provide evidence for venting of methane-charged waters at the seafloor. Enriched d18O values (to +6.6%c PDB) in micritic dolomites from the continental shelf may be derived from hypersaline fluids that were concentrated in restricted lagoons behind an outer-shelf basement ridge, reactivated during late Miocene orogenesis.
Resumo:
A petrologic-geochemical study (petrochemistry, contents of siderophile and certain lithophile elements, composition of rock-forming silicates and accessory chrome spinels) of ultrabasic rocks dredged from the arc side in the northern end of the Tonga deep-sea trench has been carried out. The ultrabasites included harzburgites and dunites. Peridotites show clearly manifested material characteristics of ultrabasic relicts strongly depleted in low-temperature basaltic components. It is suggested that they have arose in the high degree of partial melting (about 30%) of a matrix mantle source of the lherzolite type. Great similarity of the rocks studied with ultrabasites of many ophiolites that are widespread in folded belts indicates that young island arcs are among the most likely geodynamic environments of ophiolite generation.
Resumo:
Continuous cores drilled during the Bahamas Drilling Project (BDP) and the Ocean Drilling Program (ODP) Leg 166 along a transect from the top of Great Bahama Bank to the basin in the Straits of Florida provide a unique data set to test the assumption in seismic stratigraphy that seismic reflections are time lines and, thus, have a chronostratigraphic significance. Seismic reflections that are identified as seismic sequence boundaries (SSBs) were dated by means of biostratigraphy in the five ODP sites and by a combination of biostratigraphy, magnetostratigraphy and Sr isotope stratigraphy in the two BDP sites. The seismic reflection horizons are carried across a variety of facies belts from shallow-water carbonates over slope carbonates to drift deposits in the Straits of Florida. Within this system 17 SSBs were identified and dated. Despite the fact that the seismic reflections cross several facies belts, their ages remain remarkably constant. The average offset in all sites is 0.38 Myr. In no cases do the seismic reflections cut across time lines. The age differences are the combined result of the biostratigraphic sampling frequency, the spacing of marker species that required extrapolation of ages, and the resolution of the seismic data. In addition, uncertainties of age determination in the proximal sites where age-diagnostic fauna are rare add to the age differences between sites. Therefore, it can be concluded that the seismic reflections, which mark the SSBs along the Bahamas Transect, are time lines and can be used as stratigraphic markers. This finding implies that depositional surfaces are preferentially imaged by reflected seismic waves and that an impedance contrast exists across these surfaces. Facies successions across the sequence boundaries indicate that the sequence boundaries coincide with the change of deposition from times of high to low sea level. In the carbonate setting of Great Bahama Bank, sea-level changes produce changes in sediment composition, sedimentation rate and diagenesis from the platform top to the basin. The combination of these factors generates differences in sonic velocity and, thus, in impedance that cause the seismic reflection. The impedance contrasts decrease from the proximal to the distal sites, which is reflected in the seismic data by a decrease of the seismic amplitude in the basinal area.
Resumo:
K-Ar ages of 82 slate and schist (white-mica-rich whole rock) samples are reported for Late Precambrian-Early Ordovician metamorphic rocks of the Wilson, Bowers and Robertson Bay terranes of northern Victoria Land. These are amalgamated in two vertical sections along composite NE-SW horizontal profiles across (1) Oates Coast in the north, and (2) Terra Nova Bay area in the south. The ages are in the range 328-517 Ma. Both profiles show some age variation with altitude, but more importantly, they define an inverted wedge shaped pattern, reflecting a "pop-up" strucure. This is oriented NW-SE at the eastern margin of the Wilson terrane, and the edges coincide with the Exiles and Wilson Thrusts which cross the region. Ages inside the "pop-up" structure are younger, ca. 460-480 Ma, than those along its eastern and western flanks, ca. 490-520 Ma. The K-Ar age patterns thus demonstrate a late Ross Orogenic age (ca. 460 Ma) for this structure, which may be associated with assembly of the Wilson and Bowers terranes.
Resumo:
The late Miocene sediments of the Tyrrhenian ODP Site 654 encompass a deepening sequence which begins with glauconite shallow water sands followed by a rapid transition to deep water sediments and culminates with dolomitic mudstones associated with Messinian evaporites. The sequence compares well with the so-called 'Sahelian cycle' and with post-orogenic cycles recognized in peninsular Italy and Sicily. The studied interval, consisting of 55 m thick nannofossil oozes, belongs to the Globorotalia suterae subzone and lower part of the Globorotalia conomiozea Zone, indicating late Tortonian and early Messinian age, respectively. Biomagnetostratigraphic correlation assigns the Tortonian/ Messinian boundary an age of 6.44-6.45 Ma. In addition, six main events have been recognized, based on the range of keeled globorotaliids and coiling direction changes of keeled and unkeeled globorotaliids, which have been correlated to the geomagnetic time-scale. Comparison with North Atlantic sites and land sections of the Guadalquivir basin and northern Morocco provides good correlations with the events documented in these areas. In particular, Event IV, which predates the FO of Globorotalia conomiozea, may be used to recognize the Tortonian/Messinian boundary in extra-Mediterranean areas where G. conomiozea is missing. Variations in the distribution of different species of Globigerinoides are related to changes in the surficial marine environment. Although no clear trends can be recognized on the oxygen and carbon isotope records of Globigerinoides obliquus, the parallelism between the occurrence of low salinity species (G. sacculifer) and peaks of low 5180 values, as well as that of normal salinity species (G. obliquus) and peaks of high d18O values, suggests strong local changes of environmental conditions. The high amplitude of the fluctuations of d18O values suggests important variations in the salinity of the Tyrrhenian Sea, related to a rapidly changing water budget. The major feature of the carbon isotope record is a large decrease between 7.0 and 6.95 Ma, which therefore predates the 6.2 Ma global 'carbon shift'.
Resumo:
George V Land (Antarctica) includes the boundary between Late Archean-Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross-Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar-39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar-39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ~1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (~180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro-Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar-39Ar ages from ~530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.
Resumo:
This paper describes a 1 : 2 500 000 scale aeromagnetic anomaly map produced by the joint efforts of VNIIOkeangeologia, Polar Marine Geological Research Expedition (PMGRE) and the Alfred Wegener Institute for Polar and Marine Research (AWl) for the Weddell Sea region covering 1 850 000 km' of West Antarctica. Extensive regional magnetic survey flights with line-spacing of about 20 km and 5 km were carried out by the PMGRE between 1977 and 1989. In course of these investigations the PMGRE flew 9 surveys with flight-line spacing of 20 km and 6 surveys with flight-line spacing of 5 km mainly over the mountain areas of southern Palmer Land, western Dronning Maud Land, Coats Land and Pensacola Mountains, over the Ronne lee Shelf and the Filchner Ice Shelf and the central part of the Weddell Sea. More than 215 000 line-kilometers of total field aeromagnetic data have been acquired by using an Ilyushin Il-14 ski-equipped aircraft. Survey operations were centered on the field base stations Druzhnaya-1, -2, and -3, from which the majority of the Weddell Sea region network was completed. The composite map of the Weddell Sea region is prepared in colour, showing magnetic anomaly contours at intervals of 50-100 nT with supplemental contours at an interval of 25 nT in low gradient areas, on a polar stereographic projection. The compiled colour magnetic anomaly map of the Weddell Sea region demonstrates that features of large areal extent, such as geologic provinces, fold-belts, ancient eratonic fragments and other regional structural features can be readily delineated. The map allows a comparison of regional magnetic features with similar-scale geological structures on geological and geophysical maps. It also provides a database for the future production of the ''Digital Magnetic Anomaly Map of Antarctica'' in the framework of the Scientific Committee on Antarctic Research/International Association of Geomagnetism and Aeronomy (SCAR/IAGA) compilation.