139 resultados para Ni-Mn-Ga-Co alloy
Resumo:
A radioisotope energy-dispersive X-ray (EDX) system has been used on board the German research vessel "Valdivia" during an exploration expedition in the northern equatorial Pacific in 1973. The instrumentation used consisted of an X-ray detection system incorporating a 30 mm2 effective-area Si (Li) detector with a measured energy resolution of 195 eV for Mn K alpha X-rays, standard nuclear electronics, a 1024-channel analyser and a data read-out unit. The X-ray spectra in the manganese-nodule samples were excited by a 30-mCi 238Pu source. The six elements Mn, Fe, Co, Ni, Cu and Zn were analysed on board. Precision values for the analyses were less than 3% for Mn, Fe, Ni, Cu and Zn and about 5% for Co. A total amount of 350 analyses was carried out during a one-month cruise. Average contents of 190 analysed whole manganese-nodule samples from all the sampling sites of the covered area were 23.3% Mn, 6.7% Fe, 0.23% Co, 1.16% Ni, 0.94% Cu and 0.10% Zn. The average content of the base metals expressed as the sum of the Co, Ni, Cu and Zn contents was 2.48%. A linear relationship between Mn and Ni in all analysed samples, including whole manganese-nodule samples, zones of manganese nodules and manganese crusts, was observed. The Mn/Ni ratio calculated by regression analysis was 23.0. Zonal variations of the chemical contents of the six elements in the manganese nodules were found. A size classification of the manganese nodules has been suggested. Geochemical correlations of Cu and Ni versus Mn/Fe in the investigated samples are given.
Resumo:
During Leg 168 a transect was drilled across the eastern flank of the Juan de Fuca Ridge in an area where the volcanic basement is covered by sediments of variable thickness. Samples of basement volcanic rocks were recovered from nine locations along the transect, where the basement sediment interface is presently heated to temperatures varying from 15° to 64°C. Altered rocks with secondary calcium carbonate were common at four of the sites, where present-day temperatures range from 38° to 64°C. Fluid inclusions in aragonite suggest that the mineral precipitated from an aqueous fluid of seawater salinity at temperatures well below 100°C. The chemical compositions of secondary calcite and aragonite were determined with both an electron microprobe and a laser-ablation inductively coupled plasma-mass spectroscopy (LA-ICP-MS) microprobe. These two techniques yielded consistent analyses of the same minor elements (Mg and Sr) in the same specimens. The combined results show that secondary aragonites contain very little Mg, Mn, Fe, Co, Ni, Cu, Zn, Rb, La, Ce, Pb, or U, yet they contain significant Sr. In contrast, secondary calcites contain significant Mg, Mn, Fe, Ni, Cu, Zn, and Pb, yet very little Co, Rb, Sr, La, Ce, or U. Secondary calcium carbonates provide subseafloor reservoirs for some minor and trace elements. Replacement of aragonite by calcite should result in a release of Sr, Rb, and Zn to solution, and it provides a sink for Mg, Mn, Ni, Cu, Zn, and Pb.
Resumo:
The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6-90.0 mol.% Fo, 1,722-3,915 ppm Ni, 1,085-1,552 ppm Mn, 1,222-3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr-Nd-Pb isotope compositions (87Sr/86Sr = 0.70315-0.70331, 143Nd/144Nd = 0.51288-0.51292, 206Pb/204Pb = 19.55-19.93, 207Pb/204Pb = 15.60-15.63, 208Pb/204Pb = 39.31-39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al., 2007, Science Vol 316) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al., 2009, doi:10.1016/j.epsl.2008.11.013), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.
Resumo:
During the ARK-XI/1 expedition of R/V Polarstern in July-September 1995 12 samples of aerosols were collected in lower atmosphere layer over the Laptev Sea by filtration of air through AFA-HA filters. Element composition of the samples was determined by instrumental neutron activation analysis. Average atmospheric concentrations of Cr, Mn, Fe, Co, Zn and As are higher than in other regions of the Arctic. This can be explained by natural reasons: (1) by input of particles from the surface microlayer of sea water enriched by many chemical elements, (2) by atmospheric transfer of organic matter and lithogenic material from the land, and (3) by resuspension of particles from ice-rafted sediments. In some samples anthropogenic pollution was registered.
Resumo:
Utilizing the neutron-irradiation parameter J is one of the major uncertainties in 40Ar/39Ar dating. The associated error of the individual J-value for a sample of unknown age depends on the accuracy of the age of the geological standards, the fast-neutron fluence distribution in the reactor and the distances between standards and samples during irradiation. While it is generally assumed that rotating irradiation evens out radial neutron fluence gradients, we observed axial and radial variations of the J-values in sample irradiations in the rotating channels of two reactors. To quantify them, we included three-dimensionally distributed metallic fast- (Ni) and thermal- (Co) neutron fluence monitors in three irradiations and geological age standards in three more. Two irradiations were carried out under Cd-shielding in the FRG1 reactor in Geesthacht, Germany, and four without Cd-shielding in the LVR-15 reactor in Rez, Czech Republic. The 58Ni(nf,p)58Co activation reaction and ?-spectrometry of the 811 keV peak associated with the subsequent decay of 58Co to 58Fe allow to calculate the fast-neutron fluence. The fast-neutron fluences at known positions in the irradiation container correlate with the J-values determined by mass-spectrometric 40Ar/39Ar measurements of the geological age standards. Ra-dial neutron fluence gradients are up to 1.8 %/cm in FRG1 and up to 2.2 %/cm in LVR-15; the corre-sponding axial gradients are up to 5.9 and 2.1 %/cm. We conclude that sample rotation might not al-ways suffice to meet the needs of high-precision dating and gradient monitoring can be crucial.
Resumo:
Deep sea manganese nodules are considered as important natural resources for the future because of their Ni, Cu and Co contents. Their different shapes cannot be correlated clearly with their chemical composition. Surface constitution, however, can be associated with the metal contents. A classification of the nodules is suggested on the basis of these results. The iron content of the nodules strikingly shows relations to the physical properties (e.g. density and porosity). The method of density-measurement is the reason for this covariance. The investigation of freeze-dried nodular substance does not give this result. The Fe-rich nodules lose more hydration water than the Fe-poor ones during heat drying. The reason for this effect is the different crystallinity, respectively the particle size. The mean particle size is calculated on the basis of geometrical models. The X-ray-diffraction analysis proves the variation of crystallinity in connection with the Fe-content, too. The internal nodular textures also show characteristic distinctions.
Resumo:
Chemical analyses of manganese nodules from the Central Pacific Basin show that their chemical composition varies regionally, although that of the associated sediments is markedly uniform throughout the basin. Mn content varies from 16 to 32% in average. Its higher value is generally found in nodules from siliceous clay and a few from deep-sea clay. Fe content tends to enrich in nodules from deep-sea clay area. Most manganese nodules, except those from deep-sea clay, are remarkably depleted in Fe compared with ones from the other Pacific regions. Mostly, Cu and Ni contents exceed 1% in nodules from siliceous clay, and decrease towards the northwest of the basin where deep-sea clay is distributed. The inter-element relationship between manganese nodules and associated sediments suggests that the mechanism of incorporation of major and minor elements in nodules is apparently different from that of the associated sediments. This finding seems to provide a new interpretation on the problem why manganese nodules having low accumulation rate are not buried by the associated sediments with greater sedimentation rate and then occur on sediment-seawater interface.
Resumo:
The concentration of Zn, Cu, Pb, Cd, Ni, Co, Ag, Mn, Fe, Ca, Mg, K and Na in molluscs Macoma balthica, Mya arenaria, Cardium glaucum, Mytilus edulis and Astarte borealis from the southern Baltic was determined. The surface sediments and ferromanganese concretions associated with the molluscs were also analysed for concentration of these metals. Species- and region-dependent differences in the metal levels of the organisms were observed. The properties of molluscs analysed which have a tendency toward elevated biological tolerance of selected trace metals were specified. The interelement relationship between metal concentrations in the soft tissue and the shell was estimated and was discussed.
Resumo:
Distributions of major and trace elements in ferromanganese nodules, which are buried or exposed on the sea floor and in host sediments, were studied in ten concretion/sediment pairs by various physical and chemical methods. It was established that, in addition to Fe and Mn, a limited number of major and trace elements (P, Ca, Sr, Ba, Mo, Co, Zn, Ni, As, Pb, Sb, Tl, U, W, Y, and Ga) is accumulated with variable degree of intensity (relative to sediments) in the nodules. The maximal content of Mn in the nodules is 100 times higher than in the host sediments, whereas for all other elements listed above these ratios vary from more than one to 10-20. Manganese and, to a lesser extent, Ba and Sr are concentrated in the buried concretions. Other elements are primarily concentrated in concretions exposed on the sea floor. The occurrence mode of the concretions and compositional data on interstitial water suggest that metals in the concretions derive from seawater and suspended particulates, in addition to sediments. Burial of concretions in the sediment pile is accompanied by alteration of their composition, accumulation of Mn (relative to Fe), and loss of several associated metals.
Resumo:
The first series of Soviet standard reference samples of composition of ore materials and ocean pelagic sediments has been created. It includes iron-manganese nodules (SDO-4, SDO-5 and SDO-6), ore crusts (SDO-7) diatomaceous ooze (SDO-8), and deep-sea red clays (SDO-9). The standards are intended to serve as a metrologic basis for physical, physicochemical and chemical analyses of iron-manganese minerals and ocean sediments. The standards are provided with certified analyses of rock-forming components and certain trace elements. Certified characteristics are based on statistical analysis of data obtained from an inter-laboratory experiment involving analysis of the standard reference samples by a variety of methods.
Resumo:
Mineral and chemical compositions of a set of crust samples collected from the North, Central and South Atlantic were examined by means of analytical electron microscopy and ICP-MS, chemical, and microchemical elemental analysis. Vernadite, asbolane, and goethite are dominant mineral phases of the crusts, ferrihydrite is minor, hematite and feroxyhyte are rare. The samples show wide variability in major and trace element contents; however, their characteristic geochemical signatures indicate hydrogenous origin. A comparison between compositions of oceanic hydrogenous and hydrothermal crusts and metalliferous hydrothermal sediments from different ocean areas suggests that the geochemical approach may be insufficient in some cases and fail to identify hydrothermal input in ferromanganese crusts of mixed composition.
Resumo:
We examined small-scale shear zones in drillcore samples of abyssal peridotites from the Mid-Atlantic Ridge. These shear zones are associated with veins consisting of chlorite + actinolite/tremolite assemblages, with accessory phases zircon and apatite, and they are interpreted as altered plagiogranite melt impregnations, which originate from hydrous partial melting of gabbroic intrusion in an oceanic detachment fault. Ti-in-zircon thermometry yields temperatures around 820°C for the crystallization of the evolved melt. Reaction path modeling indicates that the alteration assemblage includes serpentine of the adjacent altered peridotites. Based on the model results, we propose that formation of chlorite occurred at higher temperatures than serpentinization, thus leading to strain localization around former plagiogranites during alteration. The detachment fault represents a major pathway for fluids through the oceanic crust, as evidenced by extremely low d18O of altered plagiogranite veins (+3.0-4.2 per mil) and adjacent serpentinites (+ 2.6-3.7 per mil). The uniform oxygen isotope data indicate that fluid flow in the detachment fault system affected veins and adjacent host serpentinites likewise.
Resumo:
We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.