25 resultados para Natural Sources of Ambient Noise,Localization and Tracking Systems
Resumo:
The present work examines the relationship between pH-induced changes in growth and stable isotopic composition of coccolith calcite in two coccolithophore species with a geological perspective. These cells (Gephyrocapsa oceanica and Coccolithus pelagicus) with differing physiologies and vital effects possess a growth optimum corresponding to average pH of surface seawater in the geological period during their first known occurrence. Diminished growth rates outside of their optimum pH range are explained by the challenge of proton translocation into the extracellular environment at low pH, and enhanced aqueous CO2 limitation at high pH. These diminished growth rates correspond to a lower degree of oxygen isotopic disequilibrium in G. oceanica. In contrast, the slower growing and ancient species C. pelagicus, which typically precipitates near-equilibrium calcite, does not show any modulation of oxygen isotope signals with changing pH. In CO2-utilizing unicellular algae, carbon and oxygen isotope compositions are best explained by the degree of utilization of the internal dissolved inorganic carbon (DIC) pool and the dynamics of isotopic re-equilibration inside the cell. Thus, the "carbonate ion effect" may not apply to coccolithophores. This difference with foraminifera can be traced to different modes of DIC incorporation into these two distinct biomineralizing organisms. From a geological perspective, these findings have implications for refining the use of oxygen isotopes to infer more reliable sea surface temperatures (SSTs) from fossil carbonates, and contribute to a better understanding of how climate-relevant parameters are recorded in the sedimentary archive.
Resumo:
Knowledge of the long-term history of the perennial ice is an important issue that has eluded study because the Cenozoic core material needed has been unavailable until the recent Arctic Coring Expedition (ACEX). Detrital Fe oxide mineral grains analyzed by microprobe from the last 14 Ma (164 m) of the ACEX composite core on the Lomonosov Ridge were matched to circum-Arctic sources with the same mineral and 12-element composition. These precise source determinations and estimates of drift rates were used to determine that these sand grains could not be rafted to the ACEX core site in less than a year. Thus the perennial ice cover has existed since 14 Ma except for the unlikely rapid return to seasonal ice between the average sampling interval of about 0.17 Ma. Both North America and Russia contributed significant Fe grains to the ACEX core during the last 14 Ma.