27 resultados para Munich
Resumo:
This data set contains measurements of inorganic phosphorus in samples of soil solution collected in 2003 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below) that have been aggregated to seasonal values. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved inorganic P (PO4P). Here volume-weighted mean values are provided as aggregated seasonal values (spring = March to May, summer = June to August, fall = September to November, winter = December to February) for 2003 in spring, fall, and winter. To calculate these values, the sampled volume of soil solution is used as weight for P concentrations of the respective sampling date. Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA SAN++, Skalar [Breda, The Netherlands]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar).
Resumo:
This data set contains measurements of inorganic phosphorus in samples of soil solution collected in 2005 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below) that have been aggregated to seasonal values. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved inorganic P (PO4P). Here volume-weighted mean values are provided as aggregated seasonal values (spring = March to May, summer = June to August, fall = September to November, winter = December to February) for 2005 in spring, and winter. To calculate these values, the sampled volume of soil solution is used as weight for P concentrations of the respective sampling date. Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA Autoanalyzer [Bran&Luebbe, Norderstedt, Germany]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.04 mg P l-1 (Autoanalyzer, Bran&Luebbe).
Resumo:
This data set contains measurements of dissolved phosphorus (total dissolved nitrogen: TDP, dissolved inorganic phosphorus: PO4P and dissolved organic phosphorus: DOP) in samples of soil water collected in 2002 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled bi-weekly, in 2002 at the 23.10.2002; 05.11.2002; 20.11.2002; 05.12.2002; and 28.12.2002, and analyzed for dissolved inorganic P (PO4P) and total dissolved phosphorus (TDP). Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA SAN++, Skalar [Breda, The Netherlands]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. Total dissolved P in soil solution was analyzed by irradiation with UV and oxidation with K2S2O8 followed by reaction with ammonium molybdate (Skalar catnr. 503-553w/r). As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar). Dissolved organic P (DOP) in soil solution was calculated as the difference between TDP and PO4P. In a low number of samples, TDP was equal to or smaller than PO4P; in these cases, DOP was assumed to be zero.
Resumo:
This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.
Resumo:
This data set contains measurements of dissolved nitrogen (total dissolved nitrogen: TDN, dissolved organic nitrogen: DON, dissolved ammonium: NH4+, and dissolved nitrate: NO3-) in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-) and ammonium (NH4+) concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+). In 5% of the samples, TDN was equal to or smaller than mineral N. In these cases, DON was assumed to be zero.
Resumo:
This data set contains measurements of dissolved nitrogen (total dissolved nitrogen: TDN, dissolved organic nitrogen: DON, dissolved ammonium: NH4+, and dissolved nitrate: NO3-) in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-) and ammonium (NH4+) concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+). In 5% of the samples, TDN was equal to or smaller than mineral N. In these cases, DON was assumed to be zero.
Resumo:
Im Rahmen des TASQWA-Projektes (Quarternary Variability of Water Masses in the Southern Tasman Sea and the Southern Ocean) wurde eine erstmalige quantitative und taxonomische Bestandsaufnahme der rezenten, benthischen Tiefseeforaminiferen der Korngrößenfraktion > 250 µm in 27 Sedimentoberflächenproben aus dem austral-antarktischen Gebiet durchgeführt. Es konnten 137 Arten bestimmt werden, wobei aber keine Art dominante Anteile in den Proben erreichte. Über benthische Tiefseeforaminiferen im untersuchten Gebiet existiert kaum Literatur. Es gibt zwar aus dem 19. Jhrd. sehr gut dokumentierte Foraminiferen in diesem Bereich, diese decken aber längst nicht alle gefundenen Exemplare ab. Erst um die Jahrtausendwende beschäftigten sich Autoren wieder intensiver mit den australischen und neuseeländischen, benthischen Foraminiferen. Aber auch sie drangen nicht bis in die Tiefsee vor, sondern blieben vorwiegend im Schelfbereich. Aufgrund dieser spärlichen Literatur ist jede einzelne Art ausführlich mit Synonymieliste und Abbildung dokumentiert worden. Die PAST-Analyse generierte mit den 137 Arten und den 27 Stationen sechs Faunenvergesellschaftungen, die überwiegend bathymetrisch zoniert sind. Ab 562 m beginnt am Campbell Plateau in der Hochproduktionszone die Bulimina-Vergesellschaftung. Diese Vergesellschaftung zeichnet sich durch die höchste Individuenzahl aus. Ab 959 m findet sich die Rhizammina-Vergesellschaftung, die im Untersuchungsgebiet am weitesten verbreitet ist. Die weniger oft anzutreffende Cibicides-Vergesellschaftung läßt sich ab 1660 m Tiefe finden. Nur in einer einzigen Probe an der Tasmanschwelle in 2146 m Tiefe, tritt die Reophax-Vergesellschaftung auf, in der die Textulariina überwiegen. Die weniger oft anzutreffende Ehrenbergina-Vergesellschaftung läßt sich ab 1841 m finden. In dieser Vergesellschaftung, in der die Artenanzahl fast an das Niveau der Hochproduktionszone heranreicht, halten sich Rotaliina und Textulariina die Waage. Im Emerald Becken ab 3909 m Tiefe beginnt die Jaculella- Vergesellschaftung. Diese liegt in einem echten Hungergebiet und besteht hauptsächlich aus Textulariina. Im gesamten Untersuchungsgebiet lassen sich durch die Probenauswertung vier unterschiedliche Lebensräume (Challenger Plateau, Campbell Plateau, Emerald Becken und Tasmanschwelle) ausmachen. Da jedoch nur zwei Sedimentoberflächenproben am Challenger Plateau genommen wurden, konnte dieser Bereich nur eingeschränkt mit den anderen drei Bereichen verglichen werden. Die Foraminiferengemeinschaften des Challenger Plateaus und der Tasmanschwelle können jedoch im oberen Bereich der Wassersäule auch nur eingeschränkt miteinander verglichen werden, da man an der Tasmanschwelle Sedimentoberflächenproben erst ab 1634 m genommen hat und am Campbell Plateau Proben ab 562 m vorhanden sind. Die oberen Bereiche (ab 562 m bis ca. 1300 m) des Campbell Plateaus sind Hochproduktionsbereiche, die die höchsten Individuenzahlen pro 10 cm**3 Sediment und die höchste Artenvielfalt aufweisen. Am Südwesthang des Campbell Plateaus läßt sich eine Abfolge der verschiedenen Foraminiferenvergesellschaftungen bis hinunter in das Emerald Becken nachweisen. An der Tasmanschwelle selbst läßt sich keine ausgeprägte Hochproduktionszone erkennen. Generell gibt es hier weniger Arten und weniger Individuen pro 10 cm**3 Sediment als am Cambell Plateau. Das Emerald Becken, als tiefster Bereich des Untersuchungsgebietes und als echtes Hungergebiet, nimmt eine Sonderrolle ein.
Resumo:
In the frame of the transnational ALPS-GPSQUAKENET project, a component of the Alpine Space Programme of the European Community Initiative Programme (CIP) INTERREG III B, the Deutsches Geodätisches Forschungsinstitut (DGFI) in Munich, Germany, installed in 2005 five continuously operating permanent GPS stations located along the northern Alps boundary in Bavaria. The main objective of the ALPS-GPSQUAKENET project was to build-up a high-performance transnational space geodetic network of Global Positioning System (GPS) receivers in the Alpine region (the so-called Geodetic Alpine Integrated Network, GAIN). Data from this network allows for studying crustal deformations in near real-time to monitor Earthquake hazard and improve natural disaster prevention. The five GPS stations operatied by DGFI are mounted on concrete pillars attached to solid rock. The names of the stations are (from west to east) Hochgrat (HGRA), Breitenberg (BREI), Fahrenberg (FAHR), Hochries (HRIE) and Wartsteinkopf (WART). The provided data series start from October 7, 2005. Data are stored with a temporal spacing of 15 seconds in daily RINEX files.