21 resultados para Multivariate statistical methods
Resumo:
Sites 1085, 1086 and 1087 were drilled off South Africa during Ocean Drilling Program (ODP) Leg 175 to investigate the Benguela Current System. While previous studies have focused on reconstructing the Neogene palaeoceanographic and palaeoclimatic history of these sites, palynology has been largely ignored, except for the Late Pliocene and Quaternary. This study presents palynological data from the upper Middle Miocene to lower Upper Pliocene sediments in Holes 1085A, 1086A and 1087C that provide complementary information about the history of the area. Abundant and diverse marine palynomorphs (mainly dinoflagellate cysts), rare spores and pollen, and dispersed organic matter have been recovered. Multivariate statistical analysis of dispersed organic matter identified three palynofacies assemblages (A, B, C) in the most continuous hole (1085A), and they were defined primarily by amorphous organic matter (AOM), and to a lesser extent black debris, structured phytoclasts, degraded phytoclasts, and marine palynomorphs. Ecostratigraphic interpretation based on dinoflagellate cyst, spore-pollen and palynofacies data allowed us to identify several palaeoceanographic and palaeoclimatic signals. First, the late Middle Miocene was subtropical, and sediments contained the highest percentages of land-derived organic matter, even though they are rich in AOM (palynofacies assemblage A). Second, the Late Miocene was cool-temperate and characterized by periods of intensified upwelling, increase in productivity, abundant and diverse oceanic dinoflagellate cysts, and the highest percentages of AOM (palynofacies assemblage C). Third, the Early to early Late Pliocene was warm-temperate with some dry intervals (increase in grass pollen) and intensified upwelling. Fourth, the Neogene "carbonate crash" identified in other southern oceans was recognized in two palynofacies A samples in Hole 1085A that are nearly barren of dinoflagellate cysts: one Middle Miocene sample (590 mbsf, 13.62 Ma) and one Upper Miocene sample (355 mbsf, 6.5 Ma). Finally, the extremely low percentages of pollen suggest sparse vegetation on the adjacent landmass, and Namib desert conditions were already in existence during the late Middle Miocene.
Resumo:
The Global Ocean Sampling (GOS) expedition is currently the largest and geographically most comprehensive metagenomic dataset, including samples from the Atlantic, Pacific, and Indian Oceans. This study makes use of the wide range of environmental conditions and habitats encompassed within the GOS sites in order to investigate the ecological structuring of bacterial and archaeal taxon ranks. Community structures based on taxonomically classified 16S ribosomal RNA (rRNA) gene fragments at phylum, class, order, family, and genus rank levels were examined using multivariate statistical analysis, and the results were inspected in the context of oceanographic environmental variables and structured habitat classifications. At all taxon rank levels, community structures of neritic, oceanic, estuarine biomes, as well as other exotic biomes (salt marsh, lake, mangrove), were readily distinguishable from each other. A strong structuring of the communities with chlorophyll a concentration and a weaker yet significant structuring with temperature and salinity were observed. Furthermore, there were significant correlations between community structures and habitat classification. These results were used for further investigation of one-to-one relationships between taxa and environment and provided indications for ecological preferences shaped by primary production for both cultured and uncultured bacterial and archaeal clades.
Resumo:
Sea surface temperatures and sea-ice extent are the most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 variability and ocean-atmosphere circulation. In contrast to the Atlantic and the Indian sectors, the Pacific sector of the Southern Ocean has been insufficiently investigated so far. To cover this gap of information we present diatom-based estimates of summer sea surface temperature (SSST) and winter sea-ice concentration (WSI) from 17 sites in the polar South Pacific to study the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 cal. years BP). Applied statistical methods are the Imbrie and Kipp Method (IKM) and the Modern Analog Technique (MAT) to estimate temperature and sea-ice concentration, respectively. Our data display a distinct LGM east-west differentiation in SSST and WSI with steeper latitudinal temperature gradients and a winter sea-ice edge located consistently north of the Pacific-Antarctic Ridge in the Ross sea sector. In the eastern sector of our study area, which is governed by the Amundsen Abyssal Plain, the estimates yield weaker latitudinal SSST gradients together with a variable extended winter sea-ice field. In this sector, sea-ice extent may have reached sporadically the area of the present Subantarctic Front at its maximum LGM expansion. This pattern points to topographic forcing as major controller of the frontal system location and sea-ice extent in the western Pacific sector whereas atmospheric conditions like the Southern Annular Mode and the ENSO affected the oceanographic conditions in the eastern Pacific sector. Although it is difficult to depict the location and the physical nature of frontal systems separating the glacial Southern Ocean water masses into different zones, we found a distinct temperature gradient in latitudes straddled by the modern Southern Subtropical Front. Considering that the glacial temperatures north of this zone are similar to the modern, we suggest that this represents the Glacial Southern Subtropical Front (GSSTF), which delimits the zone of strongest glacial SSST cooling (>4K) to its North. The southern boundary of the zone of maximum cooling is close to the glacial 4°C isotherm. This isotherm, which is in the range of SSST at the modern Antarctic Polar Front (APF), represents a circum-Antarctic feature and marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). We also assume that a glacial front was established at the northern average winter sea ice edge, comparable with the modern Southern Antarctic Circumpolar Current Front (SACCF). During the glacial, this front would be located in the area of the modern APF. The northward deflection of colder than modern surface waters along the South American continent leads to a significant cooling of the glacial Humboldt Current surface waters (4-8K), which affects the temperature regimes as far north as into tropical latitudes. The glacial reduction of ACC temperatures may also result in the significant cooling in the Atlantic and Indian Southern Ocean, thus may enhance thermal differentiation of the Southern Ocean and Antarctic continental cooling. Comparison with temperature and sea ice simulations for the last glacial based on numerical simulations show that the majority of modern models overestimate summer and winter sea ice cover and that there exists few models that reproduce our temperature data rather well.
Resumo:
A composite record (LO09-14) of three sediment cores from the subpolar North Atlantic (Reykjanes Ridge) was investigated in order to assess surface ocean variability during the last 11 kyr. The core site is today partly under the influence of the Irminger Current (IC), a branch of the North Atlantic Drift continuing northwestward around Iceland. However, it is also proximal to the Sub-Arctic Front (SAF) that may cause extra dynamic hydrographic conditions. We used statistical methods applied to the fossil assemblages of diatoms to reconstruct quantitative sea surface temperatures (SSTs). Our investigations give evidence for different regional signatures of Holocene surface oceanographic changes in the North Atlantic. Core LO09-14 reveal relatively low and highly variable SSTs during the early Holocene, indicating a weak IC and increased advection of subpolar water over the site. A mid-Holocene thermal optimum with a strong IC occurs from 7.5 to 5 kyr and is followed by cooler and more stable late Holocene surface conditions. Several intervals throughout the Holocene are dominated by the diatom species Rhizosolenia borealis, which we suggest indicates proximity to a strongly defined convergence front, most likely the SAF. Several coolings, reflecting southeastward advection of cold and ice-bearing waters, occur at 10.4, 9.8, 8.3, 7.9, 6.4, 4.7, 4.3 and 2.8 kyr. The cooling events recorded in the LO09-14 SSTs correlate well with both other surface records from the area and the NADW reductions observed at ODP Site 980 indicating a surface-deepwater linkage through the Holocene.
Resumo:
Sediments of the Equatorial Atlantic (core GeoB 1105-4) have been investigated for both calcareous dinoflagellates and organic-walled dinoflagellate cysts. In order to determine the ecological affinity of calcareous dinoflagellates the statistical methods of Detrended Correspondence Analysis (DCA) and Redundancy Analysis (RDA) were used. Utilising DCA, distribution patterns of calcareous dinoflagellates have been compared with those of the ecologically much better known organic-walled dinoflagellate cysts. This method was also used to determine which environmental gradients have a major influence on the species composition. By using existing environmental information based on benthic and planktic foraminifera, such as Sea Surface Temperature (SST) and stable oxygen and carbon isotopes, as well as information on the amount of Calcium Carbonate and Total Organic Carbon (TOC) in bottom sediments, these gradients could be interpreted in terms of productivity and glacial-interglacial trends. Using RDA, the direct relationships between the distribution patterns of calcareous dinoflagellates with the above mentioned external variables could be determined. For the studied region and time interval (141-6.7 ka) the calcareous dinoflagellates show enhanced abundances in periods with reduced productivity most probably related to decreased divergence and relatively stratified, oligotrophic oceanic conditions.