68 resultados para Modern Philosophical Interpretations and Misunderstandings
Resumo:
Petrographic and stable-isotope (d13C, d18O) patterns of carbonates from the Logatchev Hydrothermal Field (LHF), the Gakkel Ridge (GR), and a Late Devonian outcrop from the Frankenwald (Germany) were compared in an attempt to understand the genesis of carbonate minerals in marine volcanic rocks. Specifically, were the carbonate samples from modern sea floor settings and the Devonian analog of hydrothermal origin, low-temperature abiogenic origin (as inferred for aragonite in serpentinites from elsewhere on the Mid-Atlantic Ridge), or biogenic origin? Aragonite is the most abundant carbonate mineral in serpentinites from the two modern spreading ridges and occurs within massive sulfides of the LHF. The precipitation and preservation of aragonite suggests high Mg2+ and sulfate concentrations in fluids. Values of d18OPDB as high as +5.3 per mill for serpentinite-hosted aragonite and as high as +4.2 per mill for sulfide-hosted aragonite are consistent with precipitation from cold seawater. Most of the corresponding d13C values indicate a marine carbon source, whereas d13C values for sulfide-hosted aragonite as high as +3.6 per mill may reflect residual carbon dioxide in the zone of methanogenesis. Calcite veins from the LHF, by contrast, have low d18OPDB (-20.0 per mill to -16.1 per mill) and d13C values (-5.8 per mill to -4.5 per mill), indicative of precipitation from hydrothermal solutions (~129°-186°C) dominated by magmatic CO2. Calcite formation was probably favored by fluid rock interactions at elevated temperatures, which tend to remove solutes that inhibit calcite precipitation in seawater (Mg2+ and sulfate). Devonian Frankenwald calcites show low d18O values, reflecting diagenetic and metamorphic overprinting. Values of d13C around 0 per mill for basalt-hosted calcite indicate seawater-derived inorganic carbon, whereas d13C values for serpentinite-hosted calcite agree with mantle-derived CO2 (for values as low as -6 per mill) with a contribution of amagmatic carbon (for values as low as -8.6 per mill), presumably methane. Secondary mineral phases from the LHF for which a biogenic origin appears feasible include dolomite dumbbells, clotted carbonate, and a network of iron- and silica-rich filaments.
Resumo:
In the South Atlantic and adjoining Southern Ocean the kaolinite/chlorite-ratio in Late Quaternary sediments are an alternative deep water proxy to benthic foraminiferal proxies and carbonate preservation indices that is even suitable in regions with poor carbonate preservation. This paper shows the relationship between modern abyssal circulation and the kaolinite/chloriteratio and presents reconstructions of deep and bottom water advection based on the kaolinite/ chlorite proxy. We also discuss the limitations and future perspectives of the kaolinite/chlorite proxy. Latitudinal and water depth-related patterns of the kaolinite/chlorite-ratio in surface sediments correspond to the modern deep and bottom water mass distribution. Kaolinite originates from lowlatitudes and traces North Atlantic Deep Water (northern-source deep water) advection to the south. Chlorite from the southern high-latitudes is exported via northward advecting Antarctic Bottom Water and Circumpolar Deep Water (southern-source deep and bottom water). Deep-sea sedimentation in regions underlying the Antarctic Circumpolar Current was current-dominated throughout the Late Quaternary. Temporal variations of the kaolinite/chlorite-ratio in response to glacial-interglacial cycles reflect changing deep water mass configurations, suggesting a shallowing and northward retreat of northern-source deep water and accordingly wider expansion of southernsource deep and bottom water masses during glacial times relative to interglacial times. Submarine topography influenced the spatial and temporal patterns of deep water mass distribution.
Resumo:
Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean d18O of -29.1 per mil); this, together with low d-excess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island ice-thrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial-Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan.
Resumo:
In order to characterize the provenance of lithogenic surface sediments from the Eastern Mediterranean Sea (EMS), residual (leached) fraction of 34 surface samples have been analysed for their 143Nd/144Nd and 87Sr/86Sr isotope ratios. The sample locations bracket all important entrances of riverine suspended matter into the EMS as well as all sub-basins of the EMS. The combined analyses of these two isotope ratios provide a precise characterization of the lithogenic fraction of surface sediments and record their dilution towards the central sub-basins. We reconstruct provenance and possible pathways of riverine dispersal and current redistribution, assuming more or less homogenous isotopic signatures and flux rates of the eolian fraction over the EMS. Lithogenic sediments entering the Ionian Sea from the Calabrian Arc and the Adriatic Sea are characterized by high 87Sr/86Sr isotope ratios and low epsilon-Nd(0) values (average 87Sr/86Sr=0.718005 and epsilon-Nd(0)=-11.06, n=5). Aegean Sea terrigenous sediments show an average ratio of 87Sr/86Sr=0.713089 (n=5) and values of epsilon-Nd(0)=-7.89 (n=5). The Aegean isotopic signature is traceable up to the southwest, south, and southeast of Crete. The sediment loads entering the EMS via the Aegean Sea are low and spread out mainly through the Strait of Casos (east of Crete). Surface sediments from the eastern Levantine Basin are marked by the highest epsilon-Nd(0) values (-3.3, n=6) and lowest 87Sr/86Sr isotope ratios (average 0.709541, n=6), reflecting the predominant input of the Nile sediment. The influence of the Nile sediment is traceable up to the NE-trending, eastern flank of the Mediterranean Ridge. The characterization of the modern riverine dispersal and eolian flux, based on isotope data, may serve as a tool to reconstruct climate-coupled variations of lithogenic sediment input into the EMS.
Resumo:
We measured the chemical composition of 100 samples from the 250-m sediment sequence retrieved from Ocean Drilling Program Site 1256 in the Guatemala Basin using a newly developed microwave-assisted acid digestion protocol followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis. We compared these data gathered onshore to the results from the flux fusion prepared samples analyzed by shipboard ICP-AES during the leg and published in the Leg 206 Initial Reports volume, as well as to 35 randomly selected samples that were prepared by flux fusion at Boston University and analyzed by ICP-AES. Comparison of the newly developed acid digestion protocol to shore-based flux fusion demonstrates that the microwave-assisted acid technique yields a complete digestion, and because this procedure includes boric acid, it is safe for use with HF acid as boric acid neutralizes excess HF. The precision for nearly all elements in shore-based acid digestions is better than 3% of the measured values, including for elements such as Ni, Cr, and V, which are typically difficult to measure in biogenic-rich sediments. The shore-based flux fusions, while better than shipboard reported precision values (as expected), has precision better than 3% of their respective measured values for all major elements (Si, Al, Ti, Fe, Mn, Ca, Mg, Na, and K) and several trace elements (Ba and Sr). Results for P, Cr, Ni, V, Sc, and Zr are better than 5% of their measured values. Not only does the newly developed acid digestion provide better analytical results than the typical flux fusion method, the shore-based acid procedure also exhibits downhole lithologic and chemical characteristics similar to the shipboard flux fusion prepared results. These results confirm that the current shipboard methods are adequate for first-order geochemical interpretations and that the microwave-assisted acid digestion holds great potential to be the primary technique of preparing sediments on future Integrated Ocean Drilling Program expeditions.
Resumo:
On the basis of various lithological, mircopaleontological and isotopic proxy records covering the last 30,000 calendar years (cal kyr) the paleoenvironmental evolution of the deep and surface water circulation in the subarctic Nordic seas was reconstructed for a climate interval characterized by intensive ice-sheet growth and subsequent decay on the surrounding land masses. The data reveal considerable temporal changes in the type of thermohaline circulation. Open-water convection prevailed in the early record, providing moisture for the Fennoscandian-Barents ice sheets to grow until they reached the shelf break at ~26 cal. kyr and started to deliver high amounts of ice-rafted debris (IRD) into the ocean via melting icebergs. Low epibenthic delta18O values and small-sized subpolar foraminifera observed after 26 cal. kyr may implicate that advection of Atlantic water into the Nordic seas occurred at the subsurface until 15 cal. kyr. Although modern-like surface and deep-water conditions first developed at ~13.5 cal. kyr, thermohaline circulation remained unstable, switching between a subsurface and surface advection of Atlantic water until 10 cal. kyr when IRD deposition and major input of meltwater ceased. During this time, two depletions in epibenthic delta13C are recognized just before and after the Younger Dryas indicating a notable reduction in convectional processes. Despite an intermittent cooling at ~8 cal. kyr, warmest surface conditions existed in the central Nordic seas between 10 and 6 cal. kyr. However, already after 7 cal. kyr the present day situation gradually evolved, verified by a strong water mass exchange with the Arctic Ocean and an intensifying deep convection as well as surface temperature decrease in the central Nordic seas. This process led to the development of the modern distribution of water masses and associated oceanographic fronts after 5 cal. kyr and, eventually, to today's steep east-west surface temperature gradient. The time discrepancy between intensive vertical convection after 5 cal. kyr but warmest surface temperatures already between 10 and 6 cal. kyr strongly implicates that widespread postglacial surface warming in the Nordic seas was not directly linked to the rates in deep-water formation.
Resumo:
Based on the quantitative study of diatoms and radiolarians, summer sea-surface temperature (SSST) and sea ice distribution were estimated from 122 sediment core localities in the Atlantic, Indian and Pacific sectors of the Southern Ocean to reconstruct the last glacial environment at the EPILOG (19.5-16.0 ka or 23 000-19 000 cal yr. B.P.) time-slice. The statistical methods applied include the Imbrie and Kipp Method, the Modern Analog Technique and the General Additive Model. Summer SSTs reveal greater surface-water cooling than reconstructed by CLIMAP (Geol. Soc. Am. Map Chart. Ser. MC-36 (1981) 1), reaching a maximum (4-5 °C) in the present Subantarctic Zone of the Atlantic and Indian sector. The reconstruction of maximum winter sea ice (WSI) extent is in accordance with CLIMAP, showing an expansion of the WSI field by around 100% compared to the present. Although only limited information is available, the data clearly show that CLIMAP strongly overestimated the glacial summer sea ice extent. As a result of the northward expansion of Antarctic cold waters by 5-10° in latitude and a relatively small displacement of the Subtropical Front, thermal gradients were steepened during the last glacial in the northern zone of the Southern Ocean. Such reconstruction may, however, be inapposite for the Pacific sector. The few data available indicate reduced cooling in the southern Pacific and give suggestion for a non-uniform cooling of the glacial Southern Ocean.
Resumo:
Sr and Nd isotopic compositions of Arctic marine sediments characterize changes of sediment source regions and trace shelf-ocean particle pathways during glacial-interglacial transitions in the eastern Arctic Ocean. In the 140-ka sedimentary record of a marine core from Yermak Plateau, north of Svalbard, 87Sr/86Sr ratios and epsion-Nd values vary between 0.717 and 0.740 and 39.3 and 314.9, respectively. Sr and Nd isotopic composition both change characteristically during glacial-interglacial cycles and are correlated with the extension of the Svalbard/Barents Sea ice sheet (SBIS). The downcore variation in Sr and Nd isotopic composition indicates climatically induced changes in sediment provenance from two isotopically distinct end-members: (1) Eurasian shelf sediments as a distal source; and (2) Svalbard bedrock as a proximal source that coincide with a change in transport mechanism from sea ice to glacial ice. During glacier advance from Svalbard and intensified glacial bedrock erosion, epsion-Nd values decrease gradually to a minimum value of 314.9 due to increased input of crystalline Svalbard bedrock material. During glacial maxima, the SBIS covered the entire Barents Sea shelf and supplied increasing amounts of Eurasian shelf material to the Arctic Ocean as ice rafted detritus (IRD). Epsion-Nd values in glacial sediments reach maximum values that are comparable to the average value of modern Eurasian shelf and sea ice sediments (epsion-Nd = 310.3). This confirms ice rafting as a major sediment transport mechanism for Eurasian shelf sediments into the Arctic Ocean and trace a sediment origin from the Kara Sea/Laptev Sea shelf area. After the decay of the shelf-based SBIS, the glacial shelf sediment spikes during glacial terminations I (epsion-Nd = 310.6) and II (epsion-Nd = 310.1) epsion-Nd values rapidly decrease to values of 312.5 typical for interglacial averages. The downcore Sr isotopic composition is anticorrelated to the Nd isotopic composition, but may be also influenced by grain-size effects. In contrast, the Nd isotopic composition in clay- to silt-size fractions of one bulk sediment sample is similar to within 0.3-0.8 epsion-Nd units and seems to be a grain-size independent provenance tracer.
Resumo:
For the reconstruction of sea-ice variability, a biomarker approach which is based on (1) the determination of sea-ice diatom-specific highly-branched isoprenoid (IP25) and (2) the coupling of phytoplankton biomarkers and IP25 has been used. For the first time, such a data set was obtained from an array of two sediment traps deployed at the southern Lomonosov Ridge in the central Arctic Ocean at water depth of 150 m and 1550 m and recording the seasonal variability of sea ice cover in 1995/1996. These data indicate a predominantly permanent sea ice cover at the trap location between November 1995 and June 1996, an ice-edge situation with increased phytoplankton productivity and sea-ice algae input in July/August 1996, and the start of new-ice formation in late September. The record of modern sea-ice variability is then used to better interpret data from sediment core PS2458-4 recovered at the Laptev Sea continental slope close to the interception with Lomonosov Ridge and recording the post-glacial to Holocene change in sea-ice cover. Based on IP25 and phytoplankton biomarker data from Core PS2458-4, minimum sea-ice cover was reconstructed for the Bølling/Allerød warm interval between about 14.5 and 13 calendar kyr BP, followed by a rapid and distinct increase in sea-ice cover at about 12.8 calendar kyr BP. This sea-ice event was directly preceded by a dramatic freshwater event and a collapse of phytoplankton productivity, having started about 100 years earlier. These data are the first direct evidence that enhanced freshwater flux caused enhanced sea-ice formation in the Arctic at the beginning of the Younger Dryas. In combination with a contemporaneous, abrupt and very prominent freshwater/meltwater pulse in the Yermak Plateau/Fram Strait area these data may furthermore support the hypothesis that strongly enhanced freshwater (and ice) export from the Arctic into the North Atlantic could have played an important trigger role for the onset of the Younger Dryas cold reversal. During the Early Holocene, sea-ice cover steadily increased again (ice-edge situation), reaching modern sea-ice conditions (more or less permanent sea-ice cover) probably at about 7-8 calendar kyr BP.
Resumo:
The influence of different primary productivity regimes on live (Rose Bengal stained) and dead benthic foraminiferal distribution, as well as on the stable carbon isotopic composition of foraminiferal tests, was investigated in sediment surface samples (0-1 cm) from the upwelling region off Morocco between Cape Ghir (31°N) and Cape Yubi (27°N). A combination of factor analysis, detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) was applied to the benthic foraminiferal data sets. Five major assemblages for both the live and dead fauna were revealed by factor analysis. In the cape regions organic matter fluxes are enhanced by high chlorophyll-a concentrations in the overlying surface waters. Here, benthic foraminiferal faunas are characterized by identical live and dead assemblages, high standing stocks, and low species delta13C values, indicating constant year-round high productivity. Bulimina marginata dominates the unique fauna at the shallowest station off Cape Ghir indicating highest chlorophyll-a concentrations. Off both capes, the succession of the Bulimina aculeata/Uvigerina mediterranea assemblage, the Sphaeroidina bulloides/Gavelinopsis translucens assemblage, and the Hoeglundina elegans assemblage from the shelf to the deep sea reflects the decrease in chlorophyll-a concentrations, hence the export flux. In contrast, the area between the capes is characterized by differently composed live and dead assemblages, low standing stocks, and less depleted delta13C values, thus reflecting low primary productivity. High foraminiferal numbers of Epistominella exigua, Eponides pusillus, and Globocassidulina subglobosa in the dead fauna indicate a seasonally varying primary productivity signal. Significantly lower mean delta13C values were recorded in Bulimina mexicana, Cibicidoides kullenbergi, H. elegans, U. mediterranea and Uvigerina peregrina. Cibicidoides wuellerstorfi is a faithful recorder of bottom water delta13C in the Canary Islands regions. The mean delta13C signal of this species is not significantly influenced by constant high organic matter fluxes. The species-specific offset between live and dead specimens is the same.
Resumo:
Probable in-situ manganese deposits larger than 1 cm in diameter buried in ODP/DSDP cores were selected for study after examining previous descriptions of the manganese deposits in site reports and the ODP data base. Most of the selected samples from 11 cores occur at or just above sedimentary hiatuses or in slowly deposited sediments and are overlain by rapidly deposited sediments of biogenic, terrigenous or volcanogenic origin. The changes in sedimentation recorded in the lithostratigraphic sections around these deposits are closely related to changes in tectonic evolution, deep water circulation or biological productivity at the sites. The similarity in composition and structure of the buried deposits to those of the modern manganese nodules and crusts with no evidence of post-depositional change suggest that buried manganese deposits may be used as indicators of past sedimentary conditions during which they formed. Their major components are hydrogenetic and earlydiagenetic manganese minerals as well as detrital minerals. The characteristics of these manganese deposits suggests that similar processes of deposition have taken place since the Paleogene or older.