17 resultados para Models and Methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on detailed reconstructions of global distribution patterns, both paleoproductivity and the benthic d13C record of CO2, which is dissolved in the deep ocean, strongly differed between the Last Glacial Maximum and the Holocene. With the onset of Termination I about 15,000 years ago, the new (export) production of low- and mid-latitude upwelling cells started to decline by more than 2-4 Gt carbon/year. This reduction is regarded as a main factor leading to both the simultaneous rise in atmospheric CO2 as recorded in ice cores and, with a slight delay of more than 1000 years, to a large-scale gradual CO2 depletion of the deep ocean by about 650 Gt C. This estimate is based on an average increase in benthic d13C by 0.4-0.5 per mil. The decrease in new production also matches a clear 13C depletion of organic matter, possibly recording an end of extreme nutrient utilization in upwelling cells. As shown by Sarnthein et al., [1987], the productivity reversal appears to be triggered by a rapid reduction in the strength of meridional trades, which in turn was linked via a shrinking extent of sea ice to a massive increase in high-latitude insolation, i.e., to orbital forcing as primary cause.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, many small-sized copepod species are considered to be widespread, bipolar or cosmopolitan. However, these large-scale distribution patterns need to be re-examined in view of increasing evidence of cryptic and pseudo-cryptic speciation in pelagic copepods. Here, we present a phylogeographic study of Oithona similis s.l. populations from the Arctic Ocean, the Southern Ocean and its northern boundaries, the North Atlantic and the Mediterrranean Sea. O. similis s.l. is considered as one of the most abundant species in temperate to polar oceans and acts as an important link in the trophic network between the microbial loop and higher trophic levels such as fish larvae. Two gene fragments were analysed: the mitochondrial cytochrome oxidase c subunit I (COI), and the nuclear ribosomal 28S genetic marker. Seven distinct, geographically delimitated, mitochondrial lineages could be identified, with divergences among the lineages ranging from 8 to 24 %, thus representing most likely cryptic or pseudocryptic species within O. similis s.l. Four lineages were identified within or close to the borders of the Southern Ocean, one lineage in the Arctic Ocean and two lineages in the temperate Northern hemisphere. Surprisingly the Arctic lineage was more closely related to lineages from the Southern hemisphere than to the other lineages from the Northern hemisphere, suggesting that geographic proximity is a rather poor predictor of how closely related the clades are on a genetic level. Molecular clock application revealed that the evolutionary history of O. similis s.l. is possibly closely associated with the reorganization of the ocean circulation in the mid Miocene and may be an example of allopatric speciation in the pelagic zone.