696 resultados para Mineração do Peru


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abundances of organic carbon, sulfur, and reactive iron in sediments of three upwelling environments (Peru, Oman and Benguela) suggest that organic carbon/reduced sulfur ratios (C/S-ratios) in this category of marine sediments deviate considerably from previously established empirical ratios in normal marine sediments. To clarify the discrepancies, we investigated those components of the diagenetic system that limit the formation of pyrite: sulfate concentrations and reduction rates in pore waters, availability of reactive iron, and the quantity and quality of organic matter. All three limitations are evident in our sample pools. The results suggest that C/S-ratios in recent and fossil marine sediments rich in organic matter may be unsuitable as paleoenvironmental indicators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed petrographical and bulk geochemical investigations of organic matter (OM) have been performed on sediments deposited below or close to upwelling areas offshore Peru (ODP-Leg 112; Sites 679, 681, 688) and Oman (ODP-Leg 117; Sites 720, 723, 724) in order to obtain a quantitative understanding of its accumulation and degradation. Microscopical as well as nanoscopical investigations reveal that the OM in sediments affected by upwelling mechanisms mainly (up to 98%) consists of unstructured (amorphous) organic aggregates without any apparent biological structures. In sediments which are not or to a lesser extent affected by upwelling (Site 720) terrestrial OM predominates. Organic carbon (TOC) contents are highly variable and range between 9.8% in sediments deposited below upwelling cells and 0.2% in sediments outside the upwelling zone. The TOC/sulphur ratios of the sediments scatter widely. The samples from the deep-water locations (Sites 688 and 720), show C/S-ratios of "normal" marine sediments, whereas at the other locations no correlation or even a negative correlation between sulphur and TOC concentration exists. In most of the upwelling-influenced sediments OM contains a significant amount of sulphur. The incorporation of sulphur into the OM followed microbial sulphate reduction and occurred in the upper meters of the sedimentary column. Below, OM is still present in vast amounts and relatively hydrogen-rich, but is nevertheless non-metabolizable and becomes the limiting factor for bacterial sulphate reduction. According to mass balance calculations 90-99% of the OM produced in the photic zone was remineralized and 1-3% was consumed by microbial sulphate reduction. The aerobic and anaerobic processes have greatly affected degradation and conservation of OM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrocarbon gases (methane, ethane, propane, isobutane, n-butane, ethene, and propene) are present in Tertiary and Quaternary shelf, upper-slope, and lower-slope deposits of the Peruvian continental margin. Methane dominates the composition of the hydrocarbon gas at all 10 sites examined during Ocean Drilling Program (ODP) Leg 112. Generation of methane is regulated by the amount of sulfate in pore water. Wherever sulfate concentrations approach or equal zero, methane concentrations increase rapidly, reaching values near 100,000 µL/L of wet sediment at eight of the 10 sites. Methane at all 10 sites results from methanogenesis, which is inhibited where sulfate is present and microbial reduction of sulfate occurs. Hydrocarbon gases heavier than methane also are present, but at much lower concentrations than methane. These hydrocarbons are thought to result from early thermal and microbial diagenesis, based on relative gas compositions and trends of concentrations with depth. With few exceptions, the results obtained in the shipboard and shore-based laboratories are comparable for methane and ethane in sediments of Leg 112. Reanalyses of canned sediments from ODP Leg 104 and from Deep Sea Drilling Project (DSDP) Legs 76 and 84 show that gas samples can be stored for as long as 8 yr, but the amounts of individual hydrocarbon gases retained vary. Nevertheless, the trends of the data sets with depth are similar for fresh and stored samples.