31 resultados para Micronutrient and fertilization
Resumo:
During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.
Resumo:
Biological productivity in the modern equatorial Pacific Ocean, a region with high nutrients and low chlorophyll, is currently limited by the micronutrient Fe. In order to test whether Fe was limiting in the past and to identify potential pathways of Fe delivery that could drive Fe fertilization (i.e., dust delivery from eolian inputs vs. Fe supplied by the Equatorial Undercurrent), we chemically isolated the terrigenous material from sediment along a cross-equatorial transect in the central equatorial Pacific at 140°W and at Ocean Drilling Program Site 850 in the eastern equatorial Pacific. We quantified the contribution from each potential Fe-bearing terrigenous source using a suite of chemical- and isotopic discrimination strategies as well as multivariate statistical techniques. We find that the distribution of the terrigenous sources (i.e., Asian loess, South American ash, Papua New Guinea, and ocean island basalt) varies through time, latitude, and climate. Regardless of which method is used to determine accumulation rate, there also is no relationship between flux of any particular Fe source and climate. Moreover, there is no connection between a particular Fe source or pathway (eolian vs. Undercurrent) to total productivity during the Last Glacial Maximum, Pleistocene glacial episodes, and the Miocene "Biogenic Bloom". This would suggest an alternative process, such as an interoceanic reorganization of nutrient inventories, may be responsible for past changes in total export in the open ocean, rather than simply Fe supply from dust and/or Equatorial Undercurrent processes. Additionally, perhaps a change in Fe source or flux is related to a change in a particular component of the total productivity (e.g., the production of organic matter, calcium carbonate, or biogenic opal).
Resumo:
This work is based on a long time series of data collected in the well-preserved Bay of Calvi (Corsica island, Ligurian Sea, NW Mediterranean) between 1979 and 2011, which include physical characteristics (31 years), chlorophyll a (chl a, 15 years), and inorganic nutrients (13 years). Because samples were collected at relatively high frequencies, which ranged from daily to biweekly during the winter-spring period, it was possible to (1) evidence the key role of two interacting physical variables, i.e. water temperature and wind intensity, on nutrient replenishment and phytoplankton dynamics during the winter-spring period, (2) determine critical values of physical factors that explained interannual variability in the replenishment of surface nutrients and the winter-spring phytoplankton bloom, and (3) identify previously unrecognized characteristics of the planktonic ecosystem. Over the >30 year observation period, the main driver of nutrient replenishment and phytoplankton (chl a) development was the number of wind events (mean daily wind speed >5 m s-1) during the cold-water period (subsurface water <13.5°C). According to winter intensity, there were strong differences in both the duration and intensity of nutrient fertilization and phytoplankton blooms (chl a). The trophic character of the Bay of Calvi changed according to years, and ranged from very oligotrophic (i.e. subtropical regime, characterized by low seasonal variability) to mesotrophic (i.e. temperate regime, with a well-marked increase in nutrient concentrations and chl a during the winter-spring period) during mild and moderate winters, respectively. A third regime occurred during severe winters characterized by specific wind conditions (i.e. high frequency of northeasterly winds), when Mediterranean "high nutrient - low chlorophyll" conditions occurred as a result of enhanced crossshore exchanges and associated offshore export of the nutrient-rich water. There was no long-term trend (e.g. climatic) in either nutrient replenishment or the winter-spring phytoplankton bloom between 1979 and 2011, but both nutrients and chl a reflected interannual and decadal changes in winter intensity.
Resumo:
During the European Iron Fertilisation Experiment (EIFEX), performed in the Southern Ocean, we investigated the reactions of different phytoplankton size classes to iron fertilization, applying measurements of size fractionated pigments, particulate organic matter, microscopy, and flow cytometry. Chlorophyll a (Chl a) concentrations at 20-m depth increased more than fivefold following fertilization through day 26, while concentrations of particulate organic carbon (POC), nitrogen (PON), and phosphorus (POP) roughly doubled through day 29. Concentrations of Chl a and particulate organic matter decreased toward the end of the experiment, indicating the demise of the iron-induced phytoplankton bloom. Despite a decrease in total diatom biomass at the end of the experiment, biogenic particulate silicate (bPSi) concentrations increased steadily due to a relative increase of heavily silicified diatoms. Although diatoms >10 µm were the main beneficiaries of iron fertilization, the growth of small diatoms (2-8 mm) was also enhanced, leading to a shift from a haptophyte- to a diatom-dominated community in this size fraction. The total biomass had lower than Redfield C : N, N : P, and C : P ratios but did not show significant trends after iron fertilization. This concealed various alterations in the elemental composition of the different size fractions. The microplankton (>20 µm) showed decreasing C : N and increasing N : P and C : P ratios, possibly caused by increased N uptake and the consumption of cellular P pools. The nanoplankton (2-20 µm) showed almost constant C : N and decreasing N : P and C : P ratios. Our results suggest that the latter is caused by a shift in composition of taxonomic groups.
Seawater carbonate chemistry and toxicity of Pseudo-nitzschia fraudulenta in a laboratory experiment
Resumo:
Anthropogenic CO2 is progressively acidifying the ocean, but the responses of harmful algal bloom species that produce toxins that can bioaccumulate remain virtually unknown. The neurotoxin domoic acid is produced by the globally-distributed diatom genus Pseudo-nitzschia. This toxin is responsible for amnesic shellfish poisoning, which can result in illness or death in humans and regularly causes mass mortalities of marine mammals and birds. Domoic acid production by Pseudo-nitzschia cells is known to be regulated by nutrient availability, but potential interactions with increasing seawater CO2 concentrations are poorly understood. Here we present experiments measuring domoic acid production by acclimatized cultures of Pseudo-nitzschia fraudulenta that demonstrate a strong synergism between projected future CO2 levels (765 ppm) and silicate-limited growth, which greatly increases cellular toxicity relative to growth under modern atmospheric (360 ppm) or pre-industrial (200 ppm) CO2 conditions. Cellular Si:C ratios decrease with increasing CO2, in a trend opposite to that seen for domoic acid production. The coastal California upwelling system where this species was isolated currently exhibits rapidly increasing levels of anthropogenic acidification, as well as widespread episodic silicate limitation of diatom growth. Our results suggest that the current ecosystem and human health impacts of toxic Pseudo-nitzschia blooms could be greatly exacerbated by future ocean acidification and 'carbon fertilization' of the coastal ocean.
Resumo:
The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.
Resumo:
Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO2) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO2 at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO3), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.
Resumo:
This study demonstrated that the increased partial pressure of CO2 (pCO2) in seawater and the attendant acidification that are projected to occur by the year 2300 will severely impact the early development of the oyster Crassostrea gigas. Eggs of the oyster were artificially fertilized and incubated for 48 h in seawater acidified to pH 7.4 by equilibrating it with CO2-enriched air (CO2 group), and the larval morphology and degree of shell mineralization were compared with the control treatment (air-equilibrated seawater). Only 5% of the CO2 group developed into normal 'D-shaped' veliger larvae as compared with 68% in the control group, although no difference was observed between the groups up to the trochophore stage. Thus, during embryogenesis, the calcification process appears to be particularly affected by low pH and/or the low CaCO3 saturation state of high-CO2 seawater. Veliger larvae with fully mineralized shells accounted for 30% of the CO2-group larvae, compared with 72% in the control (p < 0.005). Shell mineralization was completely inhibited in 45% of the CO2-group larvae, but only in 16% of the control (p < 0.05). Normal D-shaped veligers of the control group exhibited increased shell length and height between 24 and 48 h after fertilization, while the few D-shaped veligers of the CO2 group showed no shell growth during the same period. Our results suggest that future ocean acidification will have deleterious impacts on the early development of marine benthic calcifying organisms.