24 resultados para Microbial chemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short-term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well-established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2-adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment "high light" did not reveal such genetic divergence whereas growth in a low-salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic minerals can form in the water column and sediments of lakes, either abiotically or mediated by biological activity. Such minerals have been used as paleosalinity and paleoproductivity indicators and reflect trophic state and early diagenetic conditions. They are also considered potential indicators of past and perhaps ongoing microbial activity within sediments. Authigenic concretions, including vivianite, were described in late glacial sediments of Laguna Potrok Aike, a maar lake in southernmost Argentina. Occurrence of iron phosphate implies specific phosphorus sorption behavior and a reducing environment, with methane present. Because organic matter content in these sediments was generally low during glacial times, there must have been alternative sources of phosphorus and biogenic methane. Identifying these sources can help define past trophic state of the lake and diagenetic processes in the sediments. We used scanning electron microscopy, phosphorus speciation in bulk sediment, pore water analyses, in situ ATP measurements, microbial cell counts, and measurements of methane content and its carbon isotope composition (d13C CH4) to identify components of and processes in the sediment. The multiple approaches indicated that volcanic materials in the catchment are important suppliers of iron, sulfur and phosphorus. These elements influence primary productivity and play a role in microbial metabolism during early diagenesis. Authigenic processes led to the formation of pyrite framboids and revealed sulfate reduction. Anaerobic oxidation of methane and shifts in pore water ion concentration indicated microbial influence with depth. This study documents the presence of active microbes within the sediments and their relationship to changing environmental conditions. It also illustrates the substantial role played by microbes in the formation of Laguna Potrok Aike concretions. Thus, authigenic minerals can be used as biosignatures in these late Pleistocene maar sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concern about the impacts of ocean acidification (OA) on ecosystem function has prompted many studies to focus on larval recruitment, demonstrating declines in settlement and early growth at elevated CO2 concentrations. Since larval settlement is often driven by particular cues governed by crustose coralline algae (CCA), it is important to determine whether OA reduces larval recruitment with specific CCA and the generality of any effects. We tested the effect of elevated CO2 on the survival and settlement of larvae from the common spawning coral Acropora selago with 3 ecologically important species of CCA, Porolithon onkodes, Sporolithon sp., and Titanoderma sp. After 3 d in no-choice laboratory assays at 447, 705, and 1214 µatm pCO2, the rates of coral settlement declined as pCO2 increased with all CCA taxa. The magnitude of the effect was highest with Titanoderma sp., decreasing by 87% from the ambient to highest CO2 treatment. In general, there were high rates of larval mortality, which were greater with the P. onkodes and Sporolithon sp. treatments (~80%) compared to the Titanoderma sp. treatment (65%). There was an increase in larval mortality as pCO2 increased, but this was variable among the CCA species. It appears that OA reduces coral settlement by rapidly altering the chemical cues associated with the CCA thalli and microbial community, and potentially by directly affecting larval viability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have suggested that the marine contribution of methane from shallow regions and melting marine terminating glaciers may have been underestimated. Here we report on methane sources and potential sinks associated with methane seeps in Cumberland Bay, South Georgia's largest fjord system. The average organic carbon content in the upper 8 meters of the sediment is around 0.65 wt.%; this observation combined with Parasound data suggest that the methane gas accumulations probably originate from peat-bearing sediments currently located several tens of meters below the seafloor. Only one of our cores indicates upward advection; instead most of the methane is transported via diffusion. Sulfate and methane flux estimates indicate that a large fraction of methane is consumed by anaerobic oxidation of methane (AOM). Carbon cycling at the sulfate-methane transition (SMT) results in a marked fractionation of the d13C-CH4 from an estimated source value of -65 per mil to a value as low as -96 per mil just below the SMT. Methane concentrations in sediments are high, especially close to the seepage sites (~40 mM); however, concentrations in the water column are relatively low (max. 58 nM) and can be observed only close to the seafloor. Methane is trapped in the lowermost water mass, however, measured microbial oxidation rates reveal very low activity with an average turnover of 3.1 years. We therefore infer that methane must be transported out of the bay in the bottom water layer. A mean sea-air flux of only 0.005 nM/m²/s confirms that almost no methane reaches the atmosphere.