77 resultados para Microbial Activity
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Stratified soil sampling to a depth of 1 m was repeated in April 2007 (as had been done before sowing in April 2002). Three independent samples per plot were taken of all plots in block 2 using a motor-driven soil column cylinder (Cobra, Eijkelkamp, 8.3 cm in diameter). Soil samples were dried at 40°C and segmented to a depth resolution of 5 cm giving 20 depth subsamples per core. All samples were analyzed independently. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples in 2007 were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Stratified soil sampling to a depth of 1 m was performed before sowing in April 2002. Three independent samples per plot were taken of all plots in block 2 using a motor-driven soil column cylinder (Cobra, Eijkelkamp, 8.3 cm in diameter). Soil samples were dried at 40°C and segmented to a depth resolution of 5 cm giving 20 depth subsamples per core. All samples were analyzed independently. All soil samples were passed through a sieve with a mesh size of 2 mm. Rarely present visible plant remains were removed using tweezers. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2004 to a depth of 30 cm. Three samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Sampling locations were less than 30 cm apart from sampling locations in 2002. Soil samples were segmented into 5 cm depth segments in the field (resulting in six depth layers) and made into composite samples per depth. Subsequently, samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, samples in years after 2002 were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.
Resumo:
High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. d18O values of dissolved sulfate (d18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 per mil vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum d18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 per mil and +28 per mil, respectively. Depth-correlative trends of increasing d18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, d18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift d18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 (epsilon values between 42 per mil and 79 per mil) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments.
Resumo:
A series of 22 sediment samples of Cretaceous and Cenozoic age from DSDP Holes 603, 603B, and 603C at the continental rise off the northeastern American coast near Cape Hatteras was investigated by organic geochemical methods including organic carbon determination, Rock-Eval pyrolysis, gas chromatography and combined gas chromatography/mass spectrometry of extractable hydrocarbons, and kerogen microscopy. An abundance of terrigenous organic matter, including larger coal particles (almost exclusively consisting of huminite/vitrinite macerals), is the dominant characteristic of the organofacies types at Site 603. Marine organic matter, mostly structurally degraded and in the form of fecal pellets, was preserved in the Valanginian laminated marls and in Cenomanian black claystone turbidites. Long-chain nalkanes reflect the terrigenous imprint in the nonaromatic hydrocarbon fractions, whereas a second maximum at lower carbon numbers in most cases is caused by the presence of more mature recycled organic matter. Abundant isoprenoid and steroid hydrocarbons were found in sediments containing mainly marine organic matter, whereas hopanoids reflect the ubiquitous microbial activity. The organic matter in the Site 603 sediments, in so far as it is not recycled, is thermally immature.
Resumo:
Sites 790 and 791 lie in the eastern half graben of the Sumisu Rift, a backarc graben west of the active Izu-Bonin arc volcanoes Sumisu Jima and Tori Shima, at 30°54.96'N, 139°50.66'E, in 2223 m water depth and 30°54.97'N, 139°52.20'E, in 2268 m water depth, respectively. A small decrease in the sulfate concentration in the interstitial waters from these sites suggests fairly low microbial activity by sulfate-reducing bacteria. The values of the dissolved free amino acids (DFAA) in the interstitial waters from both sites range from 1.26 to 6.82 µmol/L, with an average of 3.81 µmol/L. The acidic, basic, neutral, aromatic, and sulfur-containing amino acids have average values of 0.32, 0.50, 2.71, 0.15, and 0.09 µmol/L, respectively. The relative abundances of the acidic, basic, neutral, aromatic, and sulfur-containing amino acids average 8, 13,72, 4, and 1 mol%, respectively. Glycine, serine, alanine, ornithine, and aspartic acid are major constituent amino acids. The dissolved combined amino acids (DCAA) values range between 1.25 and 44.35 µmol/L, with an average of 10.36 µmol/L. The mean concentrations and relative abundances of the acidic, basic, neutral, aromatic, and sulfur-containing amino acids are 2.29 (22 mol%), 0.60 (6 mol%), 6.70 (65 mol%), 0.09 (1 mol%), and 0.00 µmol/L (0 mol%), respectively. Glycine is the most abundant amino acid residue, followed by glutamic acid, serine, and alanine. The predominance of DCAA over DFAA present in the interstitial waters from Sites 790 and 791 is consistent with previous results from interstitial-water and seawater analyses. The most plausible source for the DCAA is biogenic calcareous debris. A much greater depletion of aspartic acid and the basic fraction, except for ornithine, is found in the DCAA. The decomposition of the basic amino acid fraction or its incorporation to clay minerals would result in a decrease in its relative abundance, whereas ornithine is produced during early diagenesis. The characteristics of the amino acids in the interstitial waters are (1) a greater depletion of the acidic amino acid fraction in the DFAA than in the DCAA and (2) the enrichment of glycine and serine in both. The adsorption or reaction of the amino acids in interstitial waters with biogenic carbonates would be responsible for the lower relative abundance of the acidic fraction of the DFAA. The production of glycine during early diagenesis and its stability in solution would raise its relative abundance in the interstitial waters.
Resumo:
Biogenic calcareous and siliceous sediments were drilled at ODP Sites 689 and 690 on the Maud Rise, Antarctic Ocean. We analyzed dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in interstitial waters in order to characterize the amino acids in dissolved organic matter. The DFAA was predominant over the DCAA in interstitial waters at Sites 689 and 690, which contradicted the previous results from interstitial water and seawater studies. The DCAA in the interstitial waters probably originated from calcareous biogenic debris with less amounts of siliceous debris. Although glutamic acid constituted 41% of the total concentration of DCAA, it accounted for only 1% of the total concentration of DFAA due to the adsorption and/or reaction with biogenic carbonate. Ornithine, a nonprotein amino acid, is a decomposed product of arginine and made up 17 mol% of the total DFAA and. The total hydrolyzable amino acids (=DCAA + DFAA) accounted for 5 to 28% of the dissolved organic carbon (DOC) concentration, which implied that high molecular weight organic matter was a major contributor for the DOM (dissolved organic matter) in interstitial waters. Fairly positive correlation between the dissolved manganese and the total DCAA values suggested that the redox condition plays a significant role in controlling the total DCAA content. A small decrease in the sulfate concentration in the interstitial waters from both sites suggested fairly low microbial activity by sulfate-reducing bacteria.
Resumo:
Site 695 lies on the southeast margin of the South Orkney microcontinent on the northern margin of the Weddell Sea, at 62°23.48'S, 43°27.10'W in 1305 m water depth. The inorganic properties of interstitial waters at this site, including sulfate reduction, biogenic methane production, and high concentrations of ammonia and phosphate, imply high microbial activity. However, no clear relationship between amino acid composition and concentration and the type of microbial activity (e.g., sulfate reduction or methane production) can be identified. The THAA (total hydrolyzable amino acids) values range between 2.45 and 17.31 µmol/L, averaging 7.14 µmol/L. The mean concentrations and relative abundance values of acidic, basic, neutral, aromatic, and sulfur-containing amino acids are 1.34 (18%), 1.09 (15%), 3.93 (54%), 0.50 (8%), and 0.02 (0%) µmol/L, respectively. Glycine is the most abundant amino acid residue, with serine, glutamic acid, and ornithine next. The DFAA (dissolved free amino acids) values range from 0.10 to 12.73 µmol/L, averaging 4.07 µmol/L. The acidic, basic, neutral, aromatic, and sulfurcontaining amino acids are on average 0.21, 0.79, 2.56, 0.41, and 0.01 µmol/L, respectively. The relative abundances of acidic, basic, neutral, and aromatic amino acids average 4%, 18%, 58%, and 15%, respectively. Predominance of DFAA over DCAA (dissolved combined amino acids) in interstitial waters of Lithologic Units I and II is contrary to the predominance of DCAA over DFAA in other interstitial waters and seawater. The comparison of amino acid compositions between DCAA and siliceous plankton suggests that the DCAA in interstitial waters originally comes from amino acids derived from siliceous plankton. However, other sources which are much enriched in glutamic acid contribute to the DCAA composition.
Resumo:
In anoxic environments, volatile methylated sulfides like methanethiol (MT) and dimethyl sulfide (DMS) link the pools of inorganic and organic carbon with the sulfur cycle. However, direct formation of methylated sulfides from reduction of dissolved inorganic carbon has previously not been demonstrated. When studying the effect of temperature on hydrogenotrophic microbial activity, we observed formation of DMS in anoxic sediment of Lake Plußsee at 55 °C. Subsequent experiments strongly suggested that the formation of DMS involves fixation of bicarbonate via a reductive pathway in analogy to methanogenesis and engages methylation of MT. DMS formation was enhanced by addition of bicarbonate and further increased when both bicarbonate and H2 were supplemented. Inhibition of DMS formation by 2-bromoethanesulfonate points to the involvement of methanogens. Compared to the accumulation of DMS, MT showed the opposite trend but there was no apparent 1:1 stoichiometric ratio between both compounds. Both DMS and MT had negative d13C values of -62 per mil and -55 per mil, respectively. Labeling with NaH**13CO3 showed more rapid incorporation of bicarbonate into DMS than into MT. The stable carbon isotopic evidence implies that bicarbonate was fixed via a reductive pathway of methanogenesis, and the generated methyl coenzyme M became the methyl donor for MT methylation. Neither DMS nor MT accumulation were stimulated by addition of the methyl-group donors methanol and syringic acid or by the methyl-group acceptor hydrogen sulphide. The source of MT was further investigated in a H2**35S labeling experiment, which demonstrated a microbially-mediated process of hydrogen sulfide methylation to MT that accounted for only <10% of the accumulation rates of DMS. Therefore, the major source of the 13C-depleted MT was neither bicarbonate nor methoxylated aromatic compounds. Other possibilities for isotopically depleted MT, such as other organic precursors like methionine, are discussed. This DMS-forming pathway may be relevant for anoxic environments such as hydrothermally influenced sediments and fluids and sulfate-methane transition zones in marine sediments.
Resumo:
Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with dD values from -64per mil to -25per mil. All samples are enriched in water relative to fresh basalts. The dD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with d13C values from -14.9per mil to -26.6per mil. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with d13C = -4.5per mil and (2) an organic compound with d13C = -26.6per mil. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when "fresh" oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ? -4.7per mil, similar to the d13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 * 10**12 molC/yr.
Resumo:
Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, populations, and effects on economies. Previous studies with marine fish have documented that exposure to elevated levels of CO2 caused increased growth and larger otoliths in some species. This study was conducted to determine whether the elevated partial pressure of CO2 (pCO2) would have an effect on growth, otolith (ear bone) condition, survival, or the skeleton of juvenile scup, Stenotomus chrysops, a species that supports both important commercial and recreational fisheries. Elevated levels of pCO2 (1200-2600 µatm) had no statistically significant effect on growth, survival, or otolith condition after 8 weeks of rearing. Field data show that in Long Island Sound, where scup spawn, in situ levels of pCO2 are already at levels ranging from 689 to 1828 µatm due to primary productivity, microbial activity, and anthropogenic inputs. These results demonstrate that ocean acidification is not likely to cause adverse effects on the growth and survivability of every species of marine fish. X-ray analysis of the fish revealed a slightly higher incidence of hyperossification in the vertebrae of a few scup from the highest treatments compared to fish from the control treatments. Our results show that juvenile scup are tolerant to increases in seawater pCO2, possibly due to conditions this species encounters in their naturally variable environment and their well-developed pH control mechanisms.
Resumo:
Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.
Resumo:
Radiolabeled products were formed from labeled substrates during anaerobic incubation of sediments from Sites 618, 619, and 622. One set of experiments formed 14CO2, 14CH4, and 35SH2 from 2-14C-acetate and 35S-sulfate; a second set formed 14CH4 from 14C-methylamine or 14C-trimethylamine. Levels of 14CO2 and 35S2 formed were two to three orders of magnitude greater than 14CH4. Production of 14CH4 by Deep Sea Drilling Project (DSDP) sediments was four to five orders of magnitude less than that formed by anoxic San Francisco Bay sediment. However, incubation of Site 622 sediment slurries under H2 demonstrated production of small quantities of CH4. These results indicate that DSDP sediments recovered from 4 to 167 m sub-bottom (age 85,000-110,000 yr.) harbor potential microbial activity which includes sulfate reducers and methanogens. Analysis of pore waters from these DSDP sites indicates that bacterial substrates (acetate, methylated amines) were present.